八年级数学教学设计:锐角三角函数(1)_试卷分析 - 查字典数学网
数学八年级数学教学设计:锐...
首页>教学经验>试卷分析>八年级数学...

八年级数学教学设计:锐角三角函数(1)

2016-10-25 收藏

教学目的

1,使学生了解本章所要解决的新问题是:已知直角三角形的一条边和另一个元素(一边或一锐角),求这个直角三角形的其他元素。

2,使学生了解“在直角三角形中,当锐角A取固定值时,它的对边与斜边的比值也是一个固定值。

重点、难点、关键

1,重点:正弦的概念。

2,难点:正弦的概念。

3,关键:相似三角形对应边成比例的性质。

教学过程

一、复习提问

1、什么叫直角三角形?

2,如果直角三角形ABC中∠C为直角,它的直角边是什么?斜边是什么?这个直角三角形可用什么记号来表示?

二、新授

1,让学生阅读教科书第一页上的插图和引例,然后回答问题:

(1)这个有关测量的实际问题有什么特点?(有一个重要的测量点不可能到达)

(2)把这个实际问题转化为数学模型后,其图形是什么图形?(直角三角形)

(3)显然本例不能用勾股定理求解,那么能不能根据已知条件,在地面上或纸上画出另一个与它全等的直角三角形,并在这个全等图形上进行测量?(不一定能,因为斜边即水管的长度是一个较大的数值,这样做就需要较大面积的平地或纸张,再说画图也不方便。)

(4)这个实际问题可归结为怎样的数学问题?(在Rt△ABC中,已知锐角A和斜边求∠A的对边BC。)

但由于∠A不一定是特殊角,难以运用学过的定理来证明BC的长度,因此考虑能否通过式子变形和计算来求得BC的值。

2,在RT△ABC中,∠C=900,∠A=300,不管三角尺大小如何,∠A的对边与斜边的比值都等于1/2,根据这个比值,已知斜边AB的长,就能算出∠A的对边BC的长。

类似地,在所有等腰的那块三角尺中,由勾股定理可得∠A的对边/斜边=BC/AB=BC/=1/=/2 这就是说,当∠A=450时,∠A的对边与斜边的比值等于/2,根据这个比值,已知斜边AB的长,就能算出∠A的对边BC的长。

那么,当锐角A取其他固定值时,∠A的对边与斜边的比值能否也是一个固定值呢?

(引导学生回答;在这些直角三角形中,∠A的对边与斜边的比值仍是一个固定值。)

三、巩固练习:

在△ABC中,∠C为直角。

1,如果∠A=600,那么∠B的对边与斜边的比值是多少?

2,如果∠A=600,那么∠A的对边与斜边的比值是多少?

3,如果∠A=300,那么∠B的对边与斜边的比值是多少?

4,如果∠A=450,那么∠B的对边与斜边的比值是多少?

四、小结

五、作业

1,复习教科书第1-3页的全部内容。

2,选用課时作业设计。

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
大家都在看

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限