2017-05-11
收藏
高一数学精华知识点集锦
1、含n个元素的有限集合其子集共有2n个,非空子集有2n—1个,非空真子集有2n—2个。
2、集合中,Cu(A∩B)=(CuA)U(CuB),交之补等于补之并。Cu(AUB)=(CuA)∩(CuB),并之补等于补之交。
3、ax2+bx+c<0的解集为x(0 +c>0的解集为x,cx2+bx+a>0的解集为>x或x<;ax2—bx+ 4、c<0 x="" cx2="" bx="" a="">0的解集为->x或x<-。 5、原命题与其逆否命题是等价命题。原命题的逆命题与原命题的否命题也是等价命题。 6、函数是一种特殊的映射,函数与映射都可用:f:A→B表示。A表示原像,B表示像。当f:A→B表示函数时,A表示定义域,B大于或等于其值域范围。只有一一映射的函数才具有反函数。 7、原函数与反函数的单调性一致,且都为奇函数。偶函数和周期函数没有反函数。若f(x)与g(x)关于点(a,b)对称,则g(x)=2b-f(2a-x). 8、若f(-x)=f(x),则f(x)为偶函数,若f(-x)=f(x),则f(x)为奇函数;偶函数关于y轴对称,且对称轴两边的单调性相反;奇函数关于原点对称,且在整个定义域上的单调性一致。反之亦然。若奇函数在x=0处有意义,则f(0)=0。函数的单调性可用定义法和导数法求出。偶函数的导函数是奇函数,奇函数的导函数是偶函数。对于任意常数T(T≠0),在定义域范围内,都有f(x+T)=f(x),则称f(x)是周期为T的周期函数,且f(x+kT)=f(x),k≠0. 9、周期函数的特征性:①f(x+a)=-f(x),是T=2a的函数,②若f(x+a)+f(x+b)=0,即f(x+a)=-f(x+b),T=2(b-a)的函数,③若f(x)既x=a关对称,又关于x=b对称,则f(x)是T=2(b-a)的函数④若f(x +a)•f(x+b)=±1,即f(x+a)=±,则f(x)是T=2(b-a)的函数⑤f(x+a)=±,则f(x) 是T=4(b-a)的函数 10、复合函数的单调性满足“同增异减”原理。定义域都是指函数中自变量的取值范围。 11、抽象函数主要有f(xy)=f(x)+f(y)(对数型),f(x+y)=f(x)∙f(y)(指数型),f(x+y)=f(x)+f(y)(直线型)。解此类抽象函数比较实用的方法是特殊值法和周期法。 12、指数函数图像的规律是:底数按逆时针增大。对数函数与之相反. 13、ar∙as=ar+s,ar÷as=ar—s,(ar)s=ars,(ab)r=arbr。在解可化为a2x+Bax+C=0或a2x+Bax+C≥0(≤0)的指数方程或不等式时,常借助于换元法,应特别注意换元后新变元的取值范围。 14、log10N=lgN;logeN=lnN(e=2.718∙∙∙);对数的性质:如果a>0,a≠0,M>0N>0, 那么loga(MN)=logaM+logaN,;loga()=logaM—logaN;logaMn=nlogaM;alogaN=N. 换底公式:logaN=;logamlogbnlogck=logbmlogcnlogak=logcmloganlogbk. 15、函数图像的变换: (1)水平平移:y=f(x±a)(a>0)的图像可由y=f(x)向左或向右平移a个单位得到; (2)竖直平移:y=f(x)±b(b>0)图像,可由y=f(x)向上或向下平移b个单位得到; (3)对称:若对于定义域内的一切x均有f(x+m)=f(x—m),则y=f(x)的图像关于直线x=m对称;y=f(x)关于(a,b)对称的函数为y!=2b—f(2a—x). (4) ,学习计划;翻折:①y=|f(x)|是将y=f(x)位于x轴下方的部分以x轴为对称轴将期翻折到x轴上方的图像。②y=f(|x|)是将y=f(x)位于y轴左方的图像翻折到y轴的右方而成的图像。 (5)有关结论:①若f(a+x)=f(b—x),在x为一切实数上成立,则y=f(x)的图像关于 x=对称。②函数y=f(a+x)与函数y=f(b—x)的图像有关于直线x=对称。 15、等差数列中,an=a1+(n—1)d=am+(n—m)d;sn=n=na1+ 16、若n+m=p+q,则am+an=ap+aq;sk,s2k—k,s3k—2k成以k2d为公差的等差数列。an是等差数列,若ap=q,aq=p,则ap+q=0;若sp=q,sq=p,则sp+q=—(p+q);若已知sk,sn,sn—k,sn=(sk+sn+sn—k)/2k;若an是等差数列,则可设前n项和为sn=an2+bn(注:没有常数项),用方程的思想求解a,b。在等差数列中,若将其脚码成等差数列的项取出组成数列,则新的数列仍旧是等差数列。 17、等比数列中,an=a1•qn-1=am•qn-m,若n+m=p+q,则am•an=ap•aq;sn=na1(q=1), sn=,(q≠1);若q≠1,则有=q,若q≠—1,=q; sk,s2k—k,s3k—2k也是等比数列。a1+a2+a3,a2+a3+a4,a3+a4+a5也成等比数列。在等比数列中,若将其脚码成等差数列的项取出组成数列,则新的数列仍旧是等比数列。裂项公式: =—,=•(—),常用数列递推形式:叠加,叠乘, 18、弧长公式:l=|α|•r。s扇=•lr=•|α|r2=•;当一个扇形的周长一定时(为L时), 其面积最大为,其圆心角为2弧度。 19、Sina(α+β)=sinαcosβ+cosαsinβ;Sina(α—β)=sinαcosβ—cosαsinβ; Cos(α+β)=cosαcosβ—sinαsinβ;cos(α—β)=cosαcosβ+sinαsinβ
2016新人教A版高中数学必修一名校学案课件2.3-3.1.2(4份)
指数函数1新人教版高中(必修1)
人教A版必修1-3.2.1《几类不同增长的函数模型》2
2.8 对数函数新人教版高中(必修1)
2.1.2指数函数及其性质 (二)新人教版高中(必修1)
人教A版必修1《指数与指数幂的运算》(第一课时)
分数指数幂第2课时(新人教A版必修1)
新人教A版(必修1)2.3《幂函数》ppt课件之一
2.2.2指数函数及其性质 新人教版高中(必修1)2
指数函数新人教版高中(必修1)
指数函数2新人教版高中(必修1)
新课标人教版高中(必修1)《指数函数》(1)
对数函数及其性质新人教版高中(必修1)
3.1.2用二分法求方程的近似解新人教版(必修1)
对数函数的图象与性质新人教版高中(必修1)
3.2.1几类不同增长的函数模型2新人教版(必修1)
3.2.1几类不同增长的函数模型1新人教版(必修1)
2.1.1指数与指数幂的运算(新人教A版必修1)
3.1.1方程的根与函数的零点新人教版(必修1)
2016新人教A版高中数学必修一名校学案课件2.2.1-2.2.2(4份)
2016新人教A版高中数学必修一名校学案课件2.1.1-2.1.2(4份)
指数函数性质(二)2新人教版高中(必修1)
2016新人教A版高中数学必修一教学参考课件2.2.1-2.3(9份)
2016新人教A版高中数学必修一名校学案课件1.2.1-1.2.2(4份)
2016新人教A版高中数学必修一教学参考课件2.1.1-2.1.2(6份)
2016新人教A版高中数学必修一教学参考课件1.2.1-1.3.2(10份)
2016新人教A版高中数学必修一第1-3章学案 阶段质量检测(6份)
2016新人教A版高中数学必修一模块复习课件 模块综合检测(2份)
2.2.2对数函数及其性质新人教版高中(必修1)
分数指数幂第1课时(新人教A版必修1)
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |