2016-06-14
收藏
查字典数学网整理了高一数学重点知识点讲解:幂函数,其中包含了定义及性质,高中数学相对于初中来说在学习方法和解题难度上都会有所增加,所以我们要熟悉每个重点知识点,以此来找到更好的学习方法。
掌握幂函数的内部规律及本质是学好幂函数的关键所在,下面是整理的幂函数公式大全,希望对广大朋友有所帮助。
定义:
形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:
当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域
性质:
对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:
首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x0,函数的定义域是(-,0)(0,+).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:
排除了为0与负数两种可能,即对于x0,则a可以是任意实数;
排除了为0这种可能,即对于x0和x0的所有实数,q不能是偶数;
排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:
如果a为任意实数,则函数的定义域为大于0的所有实数;
如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域。
由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.
可以看到:
(1)所有的图形都通过(1,1)这点。
(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。
(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。
(4)当a小于0时,a越小,图形倾斜程度越大。
(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。
(6)显然幂函数无界。
初一数学知识点:圆
初一数字知识点总结之三角形
初一数学知识点:四边形
初一数学知识点:矩形菱形正方形
青岛版七年级数学课后训练:科学计数法
初一数学知识点总结三角形
2013七年级数字知识点总结:相交线、平行线
七年级数字知识点总结平面直角坐标系与函数的概念
七年级数学知识点全等三角形讲解
2016年七年级下册数学第一单元练习:幂的乘方与积的乘方
数学知识点整式和因式分解
初一数字知识点总结一元一次不等式(组)
初一年级下册数学训练题:多边形的内角和与外角和
精编初一数学同步测试之多项式乘多项式
七年级数学知识点之有理数归纳总结
人教版初一数学知识点锐角三角函数
七年级数学知识点:整式和因式分解
初一数学知识点相交线和平行线
沪教版七年级数学下学期第十章随堂练习10.2平行线的判定
初一数学知识点:整式加减
初一数学知识点一元二次方程和不等式
初一年级下册数学随堂训练:第五单元
初一数学四边形知识点
北师大版初一下册数学随堂练习题:第一单元
初一二次根式知识点
沪教版七年级数学《因式分解数学》随堂测试
青岛版七年级数学巩固训练:积的乘方与幂的乘方
初一数字知识点总结—二次根式
《同底数幂的除法》:七年级下册数学第一单元同步练习
人教版初一数学知识点一元二次方程和不等式
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |