Ⅰ、综合问题精讲:
代数几何综合题是初中数学中覆盖面最广、综合性最强的题型,近几年中考试题中的综合题大多以代数几何综合题的形式出现,其解题关键点是借助几何直观解题,运用方程、函数的思想解题,灵活运用数形结合,由形导数,以数促形,综合运用代数几何知识解题.
Ⅱ、典型例题剖析
【例1】(温州,12分)如图,已知四边形ABCD内接于⊙O,A是的中点,AEAC于A,与⊙O及CB的延长线分别交于点F、E,且,EM切⊙O于M。
⑴ △ADC∽△EBA;⑵ AC2=BC
⑶如果AB=2,EM=3,求cotCAD的值。
解:⑴∵四边形ABCD内接于⊙O,CDA=ABE,
∵,DCA=BAE,
△CAD∽△AEB
⑵ 过A作AHBC于H(如图)
∵A是中点,HC=HB=BC,
∵CAE=900,AC2=CHCE=BCCE
⑶∵A是中点,AB=2,AC=AB=2,
∵EM是⊙O的切线,EBEC=EM2 ①
∵AC2=BCCE,BCCE=8 ②
①+②得:EC(EB+BC)=17,EC2=17
∵EC2=AC2+AE2,AE=
∵△CAD∽△ABE,CAD=AEC,
cotCAD=cotAEC=
点拨:此题的关键是树立转化思想,将未知的转化为已知的.此题表现的非常突出.如,将CAD转化为AEC就非常关键.
【例2】(自贡)如图 2-5-2所示,已知直线y=2x+2分别与x轴、y轴交于点A、B,以线段AB为直角边在第一象限内作等腰直角△ABC,BAC=90○。过C作CDx轴,D为垂足.
(1)求点 A、B的坐标和AD的长;
(2)求过B、A、C三点的抛物线的解析式。
解:(1)在y=2x+2中
分别令x=0,y=0.
得 A(l,0),B(0,2).
易得△ACD≌△BAO,所以 AD=OB=2.
(2)因为A(1,0),B(0,2),且由(1),得C(3,l).
设过过B、A、C三点的抛物线为
所以
所以
点拨:此题的关键是证明△ACD≌△BAO.
【例3】(重庆,10分)如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.
(1) 求直线AB的解析式;(2) 当t为何值时,△APQ与△AOB相似?
(3) 当t为何值时,△APQ的面积为个平方单位?
解:(1)设直线AB的解析式为y=kx+b
由题意,得 解得
所以,直线AB的解析式为y=-x+6.
(2)由AO=6, BO=8 得AB=10
所以AP=t ,AQ=10-2t
1 当APQ=AOB时,△APQ∽△AOB.
所以 = 解得 t=(秒)
2 当AQP=AOB时,△AQP∽△AOB.
所以 = 解得 t=(秒)
(3)过点Q作QE垂直AO于点E.
在Rt△AOB中,SinBAO==
在Rt△AEQ中,QE=AQSinBAO=(10-2t)=8 -t所以,S△APQ=APQE=t(8-t)
=-+4t= 解得t=2(秒)或t=3(秒).
(注:过点P作PE垂直AB于点E也可,并相应给分)
点拨:此题的关键是随着动点P的运动,△APQ的形状也在发生着变化,所以应分情况:①APQ=AOB=90○②APQ=ABO.这样,就得到了两个时间限制.同时第(3)问也可以过P作 PEAB.
【例4】(南充,10分)如图2-5-7,矩形ABCD中,AB=8,BC=6,对角线AC上有一个动点P(不包括点A和点C).设AP=x,四边形PBCD的面积为y.
(1)写出y与x的函数关系,并确定自变量x的范围.
(2)有人提出一个判断:关于动点P,⊿PBC面积与⊿PAD面积之和为常数.请你说明此判断是否正确,并说明理由.
解:(1)过动点P作PEBC于点E.
在Rt⊿ABC中,AC=10, PC=AC-AP=10-x.
∵ PEBC,ABBC,⊿PEC∽⊿ABC.
故 ,即
⊿PBC面积=
又⊿PCD面积=⊿PBC面积=
即 y,x的取值范围是0
(2)这个判断是正确的.
理由:由(1)可得,⊿PAD面积=
⊿PBC面积与⊿PAD面积之和=24.
点拨:由矩形的两边长6,8.可得它的对角线是10,这样PC=10-x,而面积y是一个不规则的四边形,所以可以把它看成规则的两个三角形:△PBC、△PCD.这样问题就非常容易解决了.
Ⅲ、综合巩固练习
(100分 90分钟)
1、如图2-5-8所示,在直角坐标系中,△ABC各顶点坐标分别为A (0,),B(-1,0)、C(0,1)中,若△DEF各顶点坐标分别为D(,0)、E(0,1)、F(0,-1),则下列判断正确的是( )
A.△DEF由△ABC绕O点顺时针旋转90○得到;
B.△DEF由△ABC绕O点逆时针旋转90○得到;
C.△DEF由△ABC绕O点顺时针旋转60○得到;
D.△DEF由△ABC绕O点顺时针旋转120○得到
2.如图2-5-9,已知直线 y=2x+1与x轴交于A点,与y轴交于B点,直线y=2x1与x轴交于C点,与y轴交于D点,试判断四边形ABCD的形状.
3.如图2-5-10所示,在矩形ABCD中,BD=20,ADAB,设ABD=,已知sin是方程25z2-35z+ 12=0的一个实根.点E、F分别是BC、DC上的点,EC+CF=8,设BE=x,△AEF面积等于y.
⑴ 求出y与x之间的函数关系式;
⑵ 当E、F两点在什么位置时y有最小值?并求出这个最小值.
4.(10分)如图2-5-11所示,直线y=-x+ 4与x 轴、y轴分别交于点M、N.
(1)求M、N两点的坐标;
(2)如果点P在坐标轴上,以点P为圆心,为半径的圆与直线y=-x+ 4相切,求点P的坐标.
5.(10分)如图2-5-12所示,已知等边三角形ABC中,AB=2,点P是AB边上的任意一点(点P可以与点A重合,但不与点B重合),过点P作PEBC.垂足为E;过点E作EFAC,垂足为F;过点F作FQAB,垂足为Q.设BP=x,AQ=y.
⑴ 写出y与x之间的函数关系式;
⑵ 当BP的长等于多少时,点P与点Q重合;
⑶ 当线段 PE、FQ相交时,写出线段PE、EF、FQ所围成三角形的周长的取值范围(不必写出解题过程)
6.(12分)如图2-5-13所示,已知A由两点坐标分另为(28,0)和(0,28),动点P从A点开始在线段AO上以每秒3个长度单位的速度向原点O运动,动直线 EF从 x轴开始以每秒1个长度单位的速度向上平行移动(即EF∥x轴)并且分别交y轴,线段AB交于E、F点.连接FP,设动点P与动直线EF同时出发,运动时间为t秒.
⑴ 当t=1秒时,求梯形OPFE的面积,t为何值时,梯形OPFE的面积最大,最大面积是多少?
⑵ 当梯形OPFE的面积等于△APF的面积时,求线段 PF的长.
⑶ 设t的值分别取t1,t2时(t1t2),所对应的三角形分别为△AF1P1和△AF2P2 ,试判断这两个三角形是否相似,请证明你的判断.
7.(12分)如图2-5-14所示,在直角坐标系中,矩形ABCD的顶点,A的坐标为(1,0),对角线的交点P的坐标为(,1)
⑴ 写出B、C、D三点的坐标;
⑵ 若在AB上有一点 E作,入过 E点的直线将矩形ABCD的面积分为相等的两部分,求直线l的解析式;
⑶ 若过C点的直线将矩形ABCD的面积分为4:3两部分,并与y轴交于点M,求过点C、D、M三点的抛物线的解析式.
8.(10分)已知矩形ABCD在平面直角坐标系中,顶点A、B、D的坐标分别为A(0,0),B(m,0),D(0,4)其中m0.
⑴ 写出顶点C的坐标和矩形ABCD的中心P点的坐标(用含m的代数式表示)
⑵ 若一次函数y=kx-1的图象把矩形ABCD分成面积相等的两部分,求此一次函数的解析式(用含m的代数式表示)
⑶ 在⑵的前提下,又与半径为1的⊙M相切,且点 M(0,1),求此矩形ABCD的中心P点的坐标.
9.(10分)如图2-5-15所示,等边三角形ABC的边长为6,点D、E分别在边AB,AC上,且AD=AE=2,若点F从点B开始以每秒二个单位长度的速度沿射线BC方向运动,设点F运动的时间为t秒,当t0时,直线FD与过点A且平行于BC的直线相交于点G,GE的延长线与BC的延长线相交于点H,AB与GH相交于点O.
⑴ 设△EGA的面积为S,写出S与 t的函数解析式;
⑵ 当t为何值时,AB
⑶ 请你证明△GFH的面积为定值.
10. (10分)如图2-5-16,在矩形ABCD中,AB=10。cm,BC=8cm.点P从A出发,沿ABCD路线运动,到D停止;点Q从D出发,沿DCBA路线运动,到A停止,若点P、点Q同时出发,点P的速度为1cm/s,点Q的速度为2cm/s,a s时点P、点Q同时改变速度,点P的速度变为bcm/s,点Q的速度变为d cm/s,图 2-5-17是点 P出发x秒后△APD的面积S1(cm2)与x(s)的函数关系图象;图2-5-18是点Q出发xs后面AQD的面积S2(cm2)与x(s)的函数关系图象.
⑴ 参照图2-5-17,求a、b及图中c的值;
⑵ 求d的值;
⑶ 设点P离开点A的路程为y1(cm),点Q到点A还需走的路程为y2(cm),请分别写出动点 P、Q改变速度后,y1、y2与出发后的运动时间x(s)的函数解析式,并求出P、Q相遇时x的值.
⑷ 当点Q出发_______s时,点P、点Q在运动路线上相距的路程为25cm.