2016-09-20
收藏
函数的定义通常分为传统定义和近代定义,下面是17年高考数学一轮复习函数知识点:函数的概念,希望对考生复习有帮助。
(1)函数的概念
①设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B中都有唯一确定的数()fx和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到
B的一个函数.
②函数的三要素:定义域、值域和对应法则.
③只有定义域相同,且对应法则也相同的两个函数才是同一函数.
(2)求函数的定义域时,一般遵循以下原则:
①()fx是整式时,定义域是全体实数.
②()fx是分式函数时,定义域是使分母不为零的一切实数.
③()fx是偶次根式时,定义域是使被开方式为非负值时的实数的集合.
④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.
⑤零(负)指数幂的底数不能为零.
⑦若()fx是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.
⑧对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.
⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.
(4)求函数的值域或最值
求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:
①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.
②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.
③不等式法:利用基本不等式确定函数的值域或最值.
⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.
⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.
⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.
17年高考数学一轮复习函数知识点:函数的概念就为大家分享到这里,更多精彩内容请关注高考数学知识点栏目。
两角和与差的正弦、余弦1
一元二次方程根的分布及应用
坐标运算(2)
8.3.2双曲线及其标准方程2
三角函数复习(3)
8.4.3双曲线的几何性质3
9.8.2棱锥(二)
三角函数复习2
函数的单调性(二)
9.5.1两平面平行的判定
9.4.2直线与平面垂直2
9.5.2两平面平行的判定
8.3.1双曲线及其标准方程1
二次函数的最值
9.6.2两平面垂直的判定与性质2
三角知识整理
实数与向量的积(1)
9.9研究性课题:多面体欧拉公式的发现
8.4.1双曲线的几何性质1
奇偶性、单调性综合
9.4.4三垂线定理1
反函数(二)
对数(一)
9.6.4两平面的位置关系综合
三角测试1
两角和与差的正弦、余弦3
函数复习(2)
9.7.2棱柱2
9.7.1棱柱1
9.4.3射影
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |