2016-09-19 收藏
在考试中能否取得好成绩不仅需要好的心态,还需要在考试中对于各种题型都能熟练应对,下面由查字典数学网为大家整理了九年级数学第27章基础测试,供大家参考。
一、选择题
1.下列试验能够构成事件的是
A.掷一次硬币 B.射击一次
C.标准大气压下,水烧至100℃ D.摸彩票中头奖
2. 在1,2,3,…,10这10个数字中,任取3个数字,那么“这三个数字的和大于6”这一事件是
A.必 然事件 B.不可能事件
C.随机事件 D.以上选项均不正确
3. 随机事件A的频率 满足
A. =0 B. =1 C.0<<1 D.0≤ ≤1
4. 下面事件是 必然事件的有
①如果a、b∈R,那么a•b=b•a ②某人买彩票中奖 ③3+5>10
A.① B.② C.③ D.①②
5. 下面事件是随机事件的有
①连续两次掷一枚硬币,两次都出现正面朝上 ②异性电荷,相互吸引 ③在标准大气压下,水在1℃时结冰
A.② B.③ C.① D.②③
1.甲、乙2人下棋,下成和棋的概率是 ,乙获胜的概率是 ,则甲不胜的概率是
A. B. C. D.
2. 从装有两个红球和两个黑球的口袋内任取两个球,那么互斥而不对立的两个事件是
A.“至少有一个黑球”与“都是黑球”
B.“至少有一个黑球”与“至少有一个红球”
C.“恰有一个黑球”与“恰有两个黑球”
D.“至少有一个黑球”与“都是红球”
3. 抽查10件产品,设事件A:至少有两件次品,则A的对立事件为
A.至多两件次品 B.至多一件次品
C.至多两件正品 D.至少两件正品
4. 从一批羽毛球产品中任取一个,其质量小于4.8 g的概率为0.3,质量小于
4.85 g的概率为0.32,那么质量在[4.8,4.85)(g)范围内的概率是
A.0.62 B.0.38 C.0.02 D.0.68
5. 某产品分甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为0.03、丙级品的概率为0.01,则对成品抽查一件抽得正品的概率为
A.0.09 B.0.98 C.0.97 D.0.96
二、填空题
1. 某个地区从某年起几年内的新生婴儿数及其中男婴数如下表(结果保留两位有效 数字):
时间范围 1年内 2年内 3年内 4年内
新生婴儿数 5544 9013 13520 17191
男婴数 2716 4899 6812 8590
男婴出生频率
(1)填写表中的男婴出生频 率;
(2)这一地区男婴出生的概率约是_______.
2. 某射手射击一次击中10环、9环、8环的概率分别是0.3,0.3,0.2,那么他射击一次不够8环的概率是 .
3 .某人在打靶中,连续射击2次,事件“至少有一次中靶”的互斥事件是______.
4.我国西部一个地区的年降水量在下列区间内的概率如下表所示:
年降水量/mm [100,150) [150,200) [200,250) [250,300]
概率 0.21 0.16 0.13 0.12
则年降水量在[200,300](mm)范围内的概率是___________.
三、解答题
1.判断下列每对事件是否为互斥事件?是否为对立事件?
从一副桥牌(52张)中,任取1张,
(1)“抽出红桃”与“抽出黑桃”;
(2)“抽出红色牌”与“抽出黑色牌”;
(3)“抽出的牌点数为3的倍数”与“抽出的牌点数大于10”
2. 从一批准备出厂的电视机中,随机抽取10台进行质量检查,其中有一台是次品,能否说这批电 视机的次品的概率为0.10?
3. 某篮球运动员在同一条件下进行投篮练习,结果如下表所示:
投篮次数n 8 10 15 20 30 40 50
进球次数m 6 8 12 17] 25 32 38
进球频率
(1)计算表中进球的频 率;
(2)这位运动员投篮一次,进球的概率约是多少?
4. 用一台自动机床加工一批螺母,从中抽出100个逐个进行直径检验,结果如下:
直径
6.88
6.89
6.90
6.91
6.92
6.93
6.94
6.95
6.96
6.97
1
2
10
17
17
26
15
8
2
2
从这100个螺母中,任意抽取1个,求事件A(6.92
事件B(6.906.96)、事件D(d≤6.89)的频率.
5. 某水产试验厂实行某种鱼的人工孵化,10000个鱼卵能孵出8513尾鱼苗,根据概率的统计定义解答下列问题:
(1)求这种鱼卵的孵化概率(孵化率);
(2)30000个鱼卵大约能孵化多少尾鱼苗?
(3)要孵化5000尾鱼苗,大概得备多少鱼卵?(精确到百位)
6. 为了估计水库中的鱼的尾数,可以 使用以下的方法:先从水库中捕出一定数量的鱼,例如2000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.试根据上述数据,估计水库内鱼的尾数.
7. 某射手在一次射击中射中10环、9环、8环、7环、7环以下的概率分别为0.24、0.28、0.19、0.16、0.13.计算这个射手在一次射击中:
(1)射中10环或9环的概率,
(2) 至少射中7环的概率;
(3)射中环数不足8环的概率.
参考答案
一、选择题
1. D 2. C 3. D 4.A 5. C 1.B 2. C 3. B 4. C 5. D
二、填空题
1.(1)0.49 0.54 0.50 0.50 (2)0.50 2. 0.2 3.两次都不中靶 4.0.25
三、解答题
.
1.(1 )是互斥事件但不是对立事件.因为“抽出红桃”与“抽出黑桃”在仅取一张时不可能同时发生,因而是互斥的.同时,不能保证其中必有一个发生,因为还可能抽出“方块”或“梅花”,因此两者不对立.
(2)是互斥事件又是对立事件.因为两者不可同时发生,但其中必有一个发生.
(3)不是互斥事件,更不是对立事 件.因为“抽出的牌点数为3的倍数”与“抽出的牌点数大于10”这两个事件有可能同时发生,如抽得12.
2. 这种说法是错误的.概率是在大量试验的基 础上得到的,更是多次试验的结果,它是各次试验频率的抽象,题中所说的0.10,只是一次试验的频率,它不能称为概率.
3. 解:(1)进球的频率从左向右依次为0.7 5,0.8,0.8,0.85,0.83,0.8,0.76.
(2)这位运动员投篮一次,进球的概率约是0.8.
4. 解:事件A的频率P(A)= =0.43,事件B的频率
P(B)= =0.93,事件C的频率P(C)= =0.04,
事件D的频率P(D)= =0.01.
5. 解:(1)这种鱼卵的孵化频率为 =0.851 3,它近似的为孵化的概率.
(2)设能孵化x个,则 ,∴x=25539,
即30000个鱼卵大约能孵化25539尾鱼苗.
(3)设需备y个鱼卵,则 ,∴y≈5873,
即大概得准备5873个鱼卵.
6. 解:设水库中鱼的尾数为n,从水库中任捕一尾,每尾 鱼被捕的频率(代替概率)为 ,第二次从水库中捕出500尾,带有记号的鱼有40尾,则带记号的鱼被捕的频率(代替概率)为 ,
由 ≈ ,得n≈25000.
所以水库中约有鱼25000尾.
7. 解:设“射中10环”“射中9环”“射中8环”“射中7环”“射中7环以下”的事件分别为A、B、C、D、E,则
(1)P(A+B)=P(A)+P(B)=0.24+0.28=0.52,
即射中10环或9环的概率 为0.52.
(2)P(A+B+C+D)=P(A)+P(B)+P(C)+P(D)=0.24+0.28+0.19+0.16=0.87,
即至少射中7环的概率为0.87.
(3)P( D+E)=P(D)+P(E)=0.16+0.13=0.29,
即射中环数不足8环的概率为0.29.
查字典数学网给大家推荐的九年级数学第27章基础测试,大家仔细阅读了吗?祝大家在今后的学习中生活愉快。
二年级数学下册教学目标综合检测题1
小学二年级上册数学练习题二十八套
二年级数学混合运算及两步计算应用题训练题
小学二年级数学二上学期月考检测题1
2010-2011小学二年级数学期中试卷
二年级数学下册教学目标综合检测题2
小学数学二年级上册期中试卷
2010年二年级数学下学期计算自查题
二年级数学下册平移练习题
二年级数学易错题例题分析2
小学二年级数学应用题练习题1
二年级数学下册第一单元除法同步测试题
小学数学新课标人教版二年级上册期中试卷
二年级数学上册角的初步认识练习题
二年级数学上学期月考测试题
小学二年级数学期末复习题及答案
小学二年级数学上学期测试题
二年级数学易错题练习卷无答案2
小学二年级数学拓展题
二年级数学生活中的数学应用能力检测题
2009年小学二年级数学上学期期中测试卷(无答案)
二年级数学应用题练习题
二年级数学下学期解决问题归类复习题
二年级数学有余数的除法练习题
二年级数学易错题练习卷无答案1
小学数学新课标人教版二年级上期末试卷
小学二年级数学下学期期末试卷
二年级数学加减混合运算练习题3
小学二年级上册数学期中试卷
二年级数学加减混合运算练习题2
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |