平面向量与解析几何的综合_知识点总结 - 查字典数学网
数学平面向量与解析几何的综合
首页>学习园地>知识点总结>平面向量与解析几何的综合

平面向量与解析几何的综合

2012-12-25 收藏

  一. 教学内容:平面向量与解析几何的综合

  二. 教学重、难点:

  1. 重点:

  平面向量的基本,圆锥曲线的基本。

  2. 难点:

  平面向量与解析几何的内在联系和知识综合,向量作为解决问题的一种工具的应用意识。

  【典型例题

  [例1] 如图,已知梯形ABCD中, ,点E分有向线段 所成的比为< > ,双曲线过C、D、E三点,且以A、B为焦点,求双曲线的离心率.

  解:如图,以AB的垂直平分线为 轴,直线AB为 轴,建立直角坐标系 轴,因为双曲线经过点C、D且以AB为焦点,由对称性知C、D关于 轴对称

  设A( )B( 为梯形的高

  ∴

  设双曲线为 则

  由(1): (3)

  将(3)代入(2):∴ ∴

  [例2] 如图,已知梯形ABCD中, ,点E满足 时,求离心率 的取值范围。

  解:以AB的垂直平分线为 轴,直线AB为 轴,建立直角坐标系 轴。

  因为双曲线经过点C、D,且以A、B为焦点,由双曲线的对称性,知C、D关于 轴对称 高中生物。

  依题意,记A( )、E( 是梯形的高。

  由

  得

  设双曲线的方程为 ,则离心率由点C、E在双曲线上,将点C、E的坐标和由(1)式,得 (3)

  将(3)式代入(2)式,整理,得故 ,得解得所以,双曲线的离心率的取值范围为

  [例3] 在以O为原点的直角坐标系中,点A( )为 的直角顶点,已知 ,且点B的纵坐标大于零,(1)求 关于直线OB对称的圆的方程。(3)是否存在实数 ,使抛物线 的取值范围。

  (1)设 ,则由 ,即 ,得 或

  因为

  所以 ,故

  (2)由 ,得B(10,5),于是直线OB方程:由条件可知圆的标准方程为:得圆心(

  设圆心( )则 得 ,

  故所求圆的方程为(3)设P( )为抛物线上关于直线OB对称的两点,则

  得

  即 、于是由故当 时,抛物线(3)二:设P( ),PQ的中点M(∴ (1)-(2): 代入∴ 直线PQ的方程为

  ∴ ∴

  [例4] 已知常数 , 经过原点O以 为方向向量的直线与经过定点A( 方向向量的直线相交于点P,其中 ,试问:是否存在两个定点E、F使 为定值,若存在,求出E、F的坐标,不存在,说明理由。(2003天津)

  解:根据题设条件,首先求出点P坐标满足的方程,据此再判断是否存在两定点,使得点P到两定点距离的和为定值。

  ∵ ∴

  因此,直线OP和AB的方程分别为 和消去参数 ,得点P( ,整理,得

  ① 因为(1)当(2)当 时,方程①表示椭圆,焦点E 和F 为合乎题意的两个定点;

  (3)当 时,方程①也表示椭圆,焦点E 和F( )为合乎题意的两个定点。

  [例5] 给定抛物线C: 夹角的大小,(2)设 求 在 轴上截距的变化范围

  解:

  (1)C的焦点F(1,0),直线 的斜率为1,所以 的方程为 代入方程 )、B(则有

  所以 与

  (2)设A( )由题设

  即 ,由(2)得 ,

  ∴

  依题意有 )或B(又F(1,0),得直线 方程为

  当 或由 ,可知∴

  直线 在 轴上截距的变化范围为

  [例6] 抛物线C的方程为 )( 的两条直线分别交抛物线C于A( )两点(P、A、B三点互不相同)且满足 ((1)求抛物线C的焦点坐标和准线方程

  (2)设直线AB上一点M,满足 ,证明线段PM的中点在 轴上

  (3)当 ),求解:(1)由抛物线C的方程 ),准线方程为

  (2)证明:设直线PA的方程为

  点P( )的坐标是方程组 的解

  将(2)式代入(1)式得

  于是 ,故 (3)

  又点P( )的坐标是方程组 的解

  将(5)式代入(4)式得 ,故

  由已知得, ,则设点M的坐标为( ),由 。则

  将(3)式和(6)式代入上式得

  即(3)解:因为点P( ,抛物线方程为由(3)式知 ,代入

  将 得因此,直线PA、PB分别与抛物线C的交点A、B的坐标为

  于是, ,

  因即 或

  又点A的纵坐标 满足当 ;当 时,所以,

  [例7] 已知椭圆 和点M( 的取值范围;如要你认为不能,请加以证明。

  解: 不可能为钝角,证明如下:如图所示,设A( ),直线 的方程为

  由 得 ,又 , ,若 为钝角,则

  即 ,即

  即

  即∴

  ∴

  【模拟】(答题时间:60分钟)

  1. 已知椭圆 ,定点A(0,3),过点A的直线自上而下依次交椭圆于M、N两个不同点,且 ,求实数 的取值范围。

  2. 设抛物线 轴,证明:直线AC经过原点。

  3. 如图,设点A、B为抛物线 ,求点M的轨迹方程,并说明它表示什么曲线。

  4. 平面直角坐标系中,O为坐标原点,已知两点A(3,1),B( )若C满足 ,其中 ,求点C的轨迹方程。

  5. 椭圆的中心是原点O,它的短轴长为 ,相应于焦点F( )的准线 与 轴相交于点A, ,过点A的直线与椭圆相交于P、Q两点。

  (1)求椭圆的方程;

  (2)设 ,过点P且平行于准线 的直线与椭圆相交于另一点M,证明 ;

  (3)若 ,求直线PQ的方程。

  【试题答案】

  1. 解:因为 ,且A、M、N三点共线,所以 ,且 ,得N点坐标为

  因为N点在椭圆上,所以即所以

  由

  解得2. 证明:设A( )、B( )( ),则C点坐标为( 、

  因为A、F、B三点共线,所以 ,即

  化简得

  由 ,得

  所以

  即A、O、C三点共线,直线AC经过原点

  3. 解:设 、 、则 、

  , ,

  ∵ ∴

  即又

  即 (2) ∵ A、M、B三点共线

  ∴

  即

  化简得 ③

  将①②两式代入③式,化简整理,得

  ∵ A、B是异于原点的点 ∴ 故点M的轨迹方程是 ( )为圆心,以4. 方法一:设C(

  由 ,且 ,

  ∴ 又 ∵ ∴

  ∴ 方法二:∵ ,∴ 点C在直线AB上 ∴ C点轨迹为直线AB

  ∵ A(3,1)B( ) ∴ 5. 解:(1) ;(2)A(3,0),

  由已知得 注意解得 ,因F(2,0),M( )故

  而

  (3)设PQ方程为 ,由

  得依题意 ∵

  ∴ ①及 ③

  由①②③④得 ,从而所以直线PQ方程为

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
大家都在看

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限