2012-12-25
收藏
M:著名的理发师悖论是伯特纳德·罗素提出的。一个理发师的招牌上写着:
告示:城里所有不自己刮脸的男人都由我给他们刮脸,我也只给这些人刮脸。
M:谁给这位理发师刮脸呢?
M:如果他自己刮脸,那他就属于自己刮脸的那类人。但是,他的招牌说明他不给这类人刮脸,因此他不能自己来刮。
M:如果另外一个人来给他刮脸,那他就是不自己刮脸的人。但是,他的招牌说他要给所有这类人刮脸。因此其他任何人也不能给他刮脸。看来,没有任何人能给这位理发师刮脸了!
伯特纳德·罗素提出这个悖论,为的是把他发现的关于集合的一个著名悖论用故事通俗地表述出来。某些集合看起来是它自己的元素。例如,所有不是苹果的东西的集合、它本身就不是苹果,所以它必然是此集合自身的元素。现在来考虑一个由一切不是它本身的元案的集合组成的集合。这个集合是它本身的元素吗?无论你作何回答,你都自相矛盾[*]。
在逻辑学历史上最富戏剧性的危机之一就与这条逆论有关。德国的著名逻辑学家哥特洛伯·弗里兹写完了他最重要的著作《算法基础》第二卷,他认为他在这本书中确立了一套严密的集合论,它可作为整个数学的基础。1902年,当该书付印时,他收到了罗索的信,他得知上面那条悖论。弗里兹的集合论容许由一切不是它自身的元素的集合构成的集合。正如罗素在信中澄清的,这个表面上结构完美的集合却是自相矛盾的。弗里兹在收到罗素的信后,只来得及插入一个简短的附言:
“一个科学家所遇到的最不合心意的事,莫过于是在他的工作即将结束时使其基础崩溃了,我把罗素的来信发表如下……”
据说,弗里兹使用的词“不合心意”(undesirable)是数学史上最词不达意的说法了。
--------------------------------------------------------------------------------
[*] 设对于一类集合,A1={a11, a12, … a1i …},A2={a21, a22, … a2i …},……,Ai={ai1, ai2, … aij …}都满足条件aijAi (i=1, 2, … j=1, 2, …)但AiAi一切这类集合物成新集合A={A1, A2, … Ai, …) AiA,问AA?如果认为AA,则A应该不是自身集合的元素,即AA,如果AA,A就应是本集合的元素,即AA,岂非矛盾——译注
四年级数学解决问题
北师版四年级数学天平游戏
北师版四年级数学人口与环保
北师版四年级数学比大小2
四年级数学认识图形
北师版四年级数学有趣的小数点1
四年级数学相交与垂线
北师版四年级数学整小数的读写意义和性质
北师版四年级数学小数的意义2
四年级数学下册教案
北师版四年级数学小数除法2
四年级数学不带括号的混合运算
北师版四年级数学生活中的负数
北师版四年级数学动物乐园
北师版四年级数学世界人口
北师版四年级数学搭积木比赛
北师版四年级数学有趣的小数点2
北师版四年级数学小数除法3
苏教版四年级数学下册教学计划2
北师版四年级数学小数练习一
北师版四年级数学比大小1
苏教版小学数学第八册教学计划
四年级数学下学期总复习教案
北师版四年级数学字母表示数
北师版四年级数学图形的变换
四年级数学认识复式条形统计图
北师版四年级数学测量活动
北师版四年级数学小数除法1
北师版四年级数学方程
北师版四年级数学整数和整数四则运算
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |