2012-12-25
收藏
基本概念、公式及方法是数学解题的基础工具和基本技能,为此作为临考前的高三学生,务必首先要掌握高中数学中的概念、公式及基本解题方法,其次要熟悉一些基本题型,明确解题中的易误点,还应了解一些常用结论,最后还要掌握一些的应试技巧。本资料对高中数学所涉及到的概念、公式、常见题型、常用方法和结论及解题中的易误点,按章节进行了系统的整理,最后阐述了考试中的一些常用技巧,相信通过对本资料的认真研读,一定能大幅度地提升高考数学成绩。
1.集合元素具有确定性、无序性和互异性. 在求有关集合问题时,尤其要注意元素的互异性。 举例如下: (1)设P、Q为两个非空实数集合,定义集合P+Q=,若,,则P+Q中元素的有________个。(答:8) (2)设,,,那么点的充要条件是________(答:); (3)非空集合,且满足“若,则”,这样的共有_____个(答:7)
2.遇到时,你是否注意到“极端”情况:或;同样当时,你是否忘记的情形?要注意到是任何集合的子集,是任何非空集合的真子集。 举例如下: 集合,,且,则实数=______.(答:)
3.对于含有个元素的有限集合,其子集、真子集、非空子集、非空真子集的个数依次为 。 举例如下: 满足集合M有______个。 (答:7)
4.集合的运算性质: ⑴; ⑵;⑶; ⑷; ⑸; ⑹;⑺。 举例如下: 如设全集,若,,,则A=_____,B=___.(答:,)
5. 研究集合问题,一定要理解集合的意义――抓住集合的代表元素。如:—函数的定义域;—函数的值域;—函数图象上的点集。 举例如下: (1)设集合,集合N=,则___(答:); (2)设集合,, ,则_____(答:)
6. 数轴和韦恩图是进行交、并、补运算的有力工具,在具体计算时不要忘了集合本身和空集这两种特殊情况,补集思想常运用于解决否定型或正面较复杂的有关问题。 举例如下: 已知函数在区间上至少存在一个实数,使,求实数的取值范围。 (答:)
7.复合命题真假的判断。“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“真假相反”。 举例如下: 在下列说法中: ⑴“且”为真是“或”为真的充分不必要条件; ⑵“且”为假是“或”为真的充分不必要条件; ⑶“或”为真是“非”为假的必要不充分条件; ⑷“非”为真是“且”为假的必要不充分条件。其中正确的是__________(答:⑴⑶)
8.四种命题及其相互关系。若原命题是“若p则q”,则逆命题为“若q则p”;否命题为“若﹁p 则﹁q” ;逆否命题为“若﹁q 则﹁p”。 提醒: (1)互为逆否关系的命题是等价命题,即原命题与逆否命题同真、同假;逆命题与否命题同真同假。但原命题与逆命题、否命题都不等价; (2)在写出一个含有“或”、“且”命题的否命题时,要注意“非或即且,非且即或”; (3)要注意区别“否命题”与“命题的否定”:否命题要对命题的条件和结论都否定,而命题的否定仅对命题的结论否定; (4)对于条件或结论是不等关系或否定式的命题,一般利用等价关系“”判断其真假,这也是反证法的理论依据。 (5)哪些命题宜用反证法?如(1)“在△ABC中,若∠C=900,则∠A、∠B都是锐角”的否命题为 (答:在中,若,则不都是锐角);(2)已知函数,证明方程没有负数根。
9.充要条件。关键是分清条件和结论(划主谓宾),由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件。从集合角度解释,若,则A是B的充分条件;若,则A是B的必要条件;若A=B,则A是B的充要条件。比如: (1)给出下列命题:①实数是直线与平行的充要条件;②若是成立的充要条件;③已知,“若,则或”的逆否命题是“若或则”;④“若和都是偶数,则是偶数”的否命题是假命题 。其中正确命题的序号是_______(答:①④); (2)设命题p:;命题q:。若┐p是┐q的必要而不充分的条件,则实数a的取值范围是 (答:)
10. 一元一次不等式的解法:通过去分母、去括号、移项、合并同类项等步骤化为的形式,若,则;若,则;若,则当时,;当时,。 如已知关于的不等式的解集为,则关于的不等式的解集为_______(答:)
11. 一元二次不等式的解集(联系图象)。尤其当和时的解集你会正确表示吗?设,是方程的两实根,且,则其解集如下表: 或 或 R R R 如解关于的不等式:。(答:当时,;当时,或;当时,;当时,;当时,)
12. 对于方程有实数解的问题。首先要讨论最高次项系数是否为0,其次若,则一定有。对于多项式方程、不等式、函数的最高次项中含有参数时,你是否注意到同样的情形?比如: (1)对一切恒成立,则的取值范围是_______(答:); (2)关于的方程有解的条件是什么?(答:,其中为的值域),特别地,若在内有两个不等的实根满足等式,则实数的范围是_______.(答:)
13.一元二次方程根的分布理论。方程在上有两根、在上有两根、在和上各有一根的充要条件分别是什么? (、、)。根的分布理论成立的前提是开区间,若在闭区间讨论方程有实数解的情况,可先利用在开区间上实根分布的情况,得出结果,再令和检查端点的情况. 如实系数方程的一根大于0且小于1,另一根大于1且小于2,则的取值范围是_________(答:(,1))
14.二次方程、二次不等式、二次函数间的联系你了解了吗?二次方程的两个根即为二次不等式的解集的端点值,也是二次函数的图象与轴的交点的横坐标。比如: (1)不等式的解集是,则=__________(答:); (2)若关于的不等式的解集为,其中,则关于的不等式的解集为________(答:); (3)不等式对恒成立,则实数的取值范围是_______(答:)。
《数据的分段整理》教学反思
《围棋中的数学问题》教后反思
五年级上册《小数除法》教学反思
《分饼》教学反思
《时间与数学(二)》教学反思
《三位数减三位数退位减》教学反思
《平移与旋转》教学反思
《平面图形的认识》教学反思
《平均数》教学反思
小学数学三年级第一单元教学反思
《作息时间表》教学反思
《面积和面积单位》教学心得
《小数的意义和读写方法》教学反思
《位置(二)》教学反思
《2-5的乘法口诀》教学反思
《因数和倍数》教学反思
《比例的基本性质》教学反思
四年级数学《小数乘整数》教后反思
《稍复杂的求一个数的百分之几是多少》教学反思
《圆锥体积的计算》教学反思
北师大版小学教学《花边有多长》教学反思
《锐角和钝角》教后反思
《0的认识和有关0的加减法》教学反思
《位置(一)》教学反思
《三角形的内角和》教学反思二
《乘法的估算》教学反思二
《应用百分数解决问题》教学反思
《三角形的特性》教后反思
《除数是整数的小数除法》教学反思
《图形的放大和缩小》教学反思
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |