2012-12-25
收藏
一.分式方程、无理方程的相关概念:
1.分式方程:分母中含有未知数的方程叫做分式方程。
2.无理方程:根号内含有未知数的方程。(无理方程又叫根式方程)
3.有理方程:整式方程与分式方程的统称。
二.分式方程与无理方程的解法 :
1.去分母法:
用去分母法解分式方程的一般步骤是:
①在方程的两边都乘以最简公分母,约去分母,化成整式方程;
②解这个整式方程;
③把整式方程的根代入最简公分母,看结果是不是零,使最简公分母不为零的根是原方程的根,使最简公分母为零的根是增根,必须舍去。
在上述步骤中,去分母是关键,验根只需代入最简公分母。
2.换元法:
用换元法解分式方程的一般步骤是:
②换元:换元的目的就是把分式方程转化成整式方程,要注意整体代换的思想;
③三解:解这个分式方程,将得出来的解代入换的元中再求解;
④四验:把求出来的解代入各分式的最简公分母检验,若结果是零,则是原方程的增根,必须舍去;若使最简公分母不为零,则是原方程的根。
解无理方程也大多利用换元法,换元的目的是将无理方程转化成有理方程。
三.增根问题:
1.增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的增根。
2.验根:因为解分式方程可能出现增根,所以解分式方程必须验根。
3.增根的特点:增根是原分式方程转化为整式方程的根,增根必定使各分式的最简公分母为0。
解分式方程的思想就是转化,即把分式方程整式方程。
(1)考查分式方程的概念、分式方程解和增根的机会比较少,通常与其他知识综合起来命题,题型以选择、填空为主;
(2)分式方程的解法,是段考、中考考查的重点。
(1)去分母时漏乘整数项;
(2)去分母时弄错符号;
(3)换元出错;
(4)忘记验根。
【典型例题】
2014苏教版数学六上《解决问题的策略--替换》ppt课件1
2014秋苏教版数学六上2.1《分数乘整数》ppt课件1
2014苏教版数学六上《认识比》ppt课件
2014秋苏教版数学六上2.5《分数连乘》ppt课件1
2014秋苏教版数学六上1.5《表面涂色的正方体》ppt课件3
2014秋苏教版数学六上3.4《分数除法简单应用题》ppt课件3
2014苏教版数学六上《长方体和正方体表面积》ppt练习课件
2014秋苏教版数学六上3.1《分数除以整数》ppt课件2
2014苏教版数学六上《长方体和正方体的体积单位》ppt课件1
2014苏教版数学六上《长方体和正方体表面积》ppt复习课件
2014苏教版数学六上《表面积的变化》ppt课件3
2014苏教版数学六上《长方体和正方体的认识》ppt课件1
2014秋苏教版数学六上2.4《分数乘分数》ppt课件3
2014秋苏教版数学六上3.4《分数除法简单应用题》ppt课件1
2014秋苏教版数学六上2.6《倒数的认识》ppt课件1
2014秋苏教版数学六上3.2《整数除以分数》ppt课件3
2014秋苏教版数学六上3.3《分数除以分数》ppt课件1
2014秋苏教版数学六上2.6《倒数的认识》ppt课件2
2014秋苏教版数学六上2.3《求“一个数的几分之几是多少”的简单实
2014秋苏教版数学六上1.5《体积单位间的进率》ppt课件1
2014秋苏教版数学六上3.3《分数除以分数》ppt课件3
2014秋苏教版数学六上2.4《分数乘分数》ppt课件2
2014苏教版数学六上《长方体和正方体的体积单位》ppt课件
2014苏教版数学六上第二单元《长方体和正方体》ppt复习课件
2014秋苏教版数学六上3.2《整数除以分数》ppt课件2
2014秋苏教版数学六上3.4《分数除法简单应用题》ppt课件2
2014秋苏教版数学六上3.3《分数除以分数》ppt课件2
2014苏教版数学六上《长方体和正方体表面积》ppt课件1
2014苏教版数学六上《长方体和正方体的认识》ppt课件
2014秋苏教版数学六上3.1《分数除以整数》ppt课件5
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |