2015-11-19 收藏
2014高一数学暑假作业精选
下面查字典数学网为大家整理了高一数学暑假作业精选,希望大家在空余时间进行复习练习和学习,供参考。大家暑期快乐哦。
一、选择题
1.已知函数f(x)=lg,若f(a)=,则f(-a)等于()
A. B.-
C.2D.-2
[答案] B
[解析] f(a)=lg=,f(-a)=lg()-1
=-lg=-.
2.函数y=ln(1-x)的图象大致为()
[答案] C
[解析] 要使函数y=ln(1-x)有意义,应满足1-x0,x1,排除A、B;
又当x0时,-x0,1-x1,
y=ln(1-x)0,排除D,故选C.
3.(2014北京理,2)下列函数中,在区间(0,+)上为增函数的是()
A.y= B.y=(x-1)2
C.y=2-x D.y=log0.5(x+1)
[答案] A
[解析] y=在[-1,+)上是增函数,
y=在(0,+)上为增函数.
4.设函数f(x)=,若f(3)=2,f(-2)=0,则b=()
A.0B.-1
C.1D.2
[答案] A
[解析] f(3)=loga4=2,a=2.
f(-2)=4-2a+b=4-4+b=0,b=0.
5.(2013~2014学年度山东潍坊二中高一月考)已知函数y=log2(1-x)的值域为(-,0),则其定义域是()
A.(-,1) B.(0,)
C.(0,1) D.(1,+)
[答案] C
[解析] 函数y=log2(1-x)的值域为(-,0),
log2(1-x)0,
01,00,
x2-2x0,即0log54log530,
1log54log53(log53)20,
而log451,cb.
3.已知函数f(x)=,若f(x0)3,则x0的取值范围是()
A.x08 B.x00或x08
C.03,
x0+11,即x00,无解;
当x02时,log2x03,
x023,即x08,x08.
4.函数f(x)=ax+loga(2x+1)(a0且a1)在[0,2]上的最大值与最小值之和为a2,则a的值为()
A. B.5 C. D.4
[答案] A
[解析] 当a1时,ax随x的增大而增大,
loga(2x+1)随x的增大而增大,
函数f(x)在[0,2]上为增函数,
f(x)max=a2+loga5,f(x)min=1,
a2+loga5+1=a2,loga5+1=0,
loga5=-1,a=(不合题意舍去).
当0
f(x)max=1,f(x)min=a2+loga5,1+a2+loga5=a2,
loga5=-1,a=.
二、填空题
5.(2013~2014学年度江西南昌市联考)定义在R上的偶函数f(x)在[0,+)上单调递减,且f()=0,则满足f(x)0的集合为____________.
[答案] (0,)(2,+)
[解析] 本题主要考查函数的奇偶性、单调性的应用和对数不等式的解法.因为定义在R上的偶函数f(x)在[0,+)上单调递减,所以在(-,0]上单调递增.又f()=0,所以f(-)=0,由f(x)0可得x-,或x,
解得x(0,)(2,+).
6.(2014福建文,15)函数f(x)=
的零点个数是________.
[答案] 2
[解析] 当x2,令x2-2=0,得x=-;
当x0时,令2x-6+lnx=0,
即lnx=6-2x,
在同一坐标系中,画出函数y=6-2x与y=lnx的图象如图所示.
由图象可知,当x0时,函数y=6-2x与y=lnx的图象只有一个交点,即函数f(x)有一个零点.
综上可知,函数f(x)有2个零点.
三、解答题
7.已知函数f(x)=lg(4-x2).
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性,并证明.
[解析] (1)要使函数f(x)有意义,应满足4-x20,x24,-20,且a1)的图象关于原点对称.
(1)求m的值;
(2)判断函数f(x)在(1,+)上的单调性.
[解析] (1)f(x)=loga(a0,且a1)的图象关于原点对称,
f(x)为奇函数.f(-x)=-f(x).
loga=-loga=loga,
=,
1-m2x2=1-x2,m2=1,
m=1或m=-1.
当m=1时,不满足题意,舍去,故m=-1.
(2)f(x)=loga=loga.
设x1,x2(1,+),且x10,
x1x2-x1+x2-1x1x2-x2+x1-1,
又x1,x2(1,+),
(x1+1)(x2-1)=x1x2-x1+x2-10,
(x2+1)(x1-1)=x1x2-x2+x1-10,
1.
当01时,loga0,
即f(x1)f(x2),
故函数f(x)在(1,+)上是减函数.
综上可知,当a1时, f(x)在(1,+)上为减函数;
当0f(1)=-2,
即x1时, f(x)的值域是(-2,+).
当x1时, f(x)=logx是减函数,
所以f(x)f(1)=0,
即x1, f(x)的值域是(-,0].
于是函数f(x)的值域是(-,0](-2,+)=R.
(2)若函数f(x)是(-,+)上的减函数,
则下列三个条件同时成立:
当x1时, f(x)=x2-(4a+1)x-8a+4是减函数,
于是1,则a
当x1时, f(x)=logax是减函数,则0
以上就是高一数学暑假作业精选,希望能帮助到大家。
北京版数学三上《一位数的口算除法》教学设计2
北京版数学三上《两位数乘以一位数的笔算乘法》教学设计
北京版数学四上《笔算除法》及答案学案1
北京版数学四上《因数中间有0的乘法》教学设计
北京版数学三上《一位数的口算除法》教学设计
北京版数学二上《2-5的乘法口诀》学案
北京版数学二上《2的乘法口诀练习》教学设计
北京版数学三上《统计的初步知识》教学设计1
北京版数学四上《乘法分配律》教学设计
北京版数学四上《生活中的多位数》及答案学案2
北京版数学二上《用2~5的乘法口诀求商》教学设计4
北京版数学三上《因数中间有0的一位数乘法》教学设计
北京版数学三上《一位数的口算除法》教学设计3
北京版数学四上《多位数写法、大小比较训练课》教学设计
北京版数学四上《方向与位置》及答案学案
北京版数学三上《平均数》学案
北京版数学四上《与除法有关的实际问题》教学设计
北京版数学三上《认识角》及答案学案1
北京版数学四上《三位数乘两位数的笔算》教学设计1
北京版数学四上《乘法的结合律和简便算法》教学设计
北京版数学四上《商是一位数的除法》教学设计1
北京版数学四上《三位数乘两位数的乘法》教学设计
北京版数学三上《认识角》教学设计2
北京版数学四上《笔算乘法》学案3
北京版数学四上《乘除法之间的关系》教学设计
北京版数学四上《编码》教学设计
北京版数学四上《可能性》教学设计
北京版数学四上《应用乘法分配律进行简算计算》教学设计
北京版数学四上《生活中的多位数》及答案学案1
北京版数学四上《三位数乘两位数的笔算练习》教学设计
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |