2016-10-26
收藏
第2课时 生活中的轴对称
教学目的
使学生进一步认识轴对称图形,通过动手实验,掌握关于某条直线成轴对称的两个图形的对应线段相等、对应角相等;理解轴对称图形和两个图形成轴对称这两个概念的区别与联系.
重点、难点
重点:轴对称图形的对应线段相等、对应角相等.
难点:两个图形成轴对称与轴对称图形两个概念的区别与联系.
教学过程
一、复习、评讲
1.复习轴对称图形的定义.
2.评讲上节课的作业,使学生进一步掌握判断一个图形是否是轴对称图形.
二、新课
1.什么是两个图形成轴对称?
试验:发给每位同学右边两个图形的纸张,把纸张
沿着虚线折叠,观察对折后的左边部分和右边部分
是否完全重合?
像这样,把一个图形沿着某一条直线翻折过去,如果它能够与另一个图形重合,那么就说这两个图形成轴对称,这条直线就是对称轴,两个图形中的对应点(即两图形重合时互相重合的点)叫做对称点.
练习:在上图的(2)中,把A、B、C的对称点标出来.
试验:在纸上滴上墨水,把纸张对折,随后打开,看看形成的两块墨迹是不是关于折痕对称?它的对称轴是哪一条?把它画出来.
2.轴对称图形(或关于某条直线成对称的两个图形)沿对称轴对折后的两部分完全重合,所以它的对应线段(对折后重合的线段)相等,对应角(对折后重合的角)相等.
3.轴对称图形与两个图形成轴对称的区别与联系.
如图(1),如果沿着虚线对折,直线两旁的部分会完全重合,那么这个图形就是轴对称图形;若把这个图形看成是左右两部分,则这两个图形就是关于虚线这条直线成轴对称.
如图(2),如果沿着虚线折叠,右边的图形会与左边的图形完全重合,那么就说这两个图形关于虚线这条直线成轴对称,若把(2)中的左右两个四边形看成是一个整体的图形,那么这个整体的图形是轴对称图形.
因此,轴对称图形和两个图形成轴对称的本质是相同的,只是怎么看图形的问题.
三、巩固练习
1.下面哪些选项的右边图形与左边图形成轴对称?
2.如图,若沿虚线对折,左边部分与右边部分重合,请找出图中
A、B、C的对称点,并说出图中有哪些角相等?哪些线段相等?
四、小结
成轴对称的两个图形是完全重合的,因此,它们的对应
线段相等,对应角相等;知道轴对称和轴对称图形的区别与联系.
五、作业
课本P82习题第3、4题.
八年级数学第一学期期末综合水平测试.
初二期中考试数学试卷(第二学期2003-2004年)
初二数学上学期分式乘除单元练习(1)
初二数学上学期第三章图形的平移与旋转试题
初二数学整式的乘法单元试卷
初二上册整式单元试题
八年级上数学检测试卷第十四章轴对称
八年级数学相似图形单元检测
初二数学上学期第八章数据的代表答案
初二数学整式的乘法复习与测试
八年级数学期中考试卷
初二上册轴对称同步测试
初二数学上学期第五章位置确定试题
温泉中学八年级期中考试试题
平昌县职业中学八年级数学中期试卷
借助一次函数模型作决策
怀慈中学初二上册四边形试题
三角形重心,垂心,形内点的共性专题辅导
初二上册第十二章数据的描述同步试题
怀慈中学八年级上学期期中测试卷
初二数学上学期第五章位置确定答案
初二数学上学期第四章四边形性质探索试题
八年级数学第四单元数学试题
八年级数学相似图形(4[1].1—4.5)单元测评卷
初中数学一元一次不等式和一元一次不等式组测试题
北师大版初二数学试卷
高碑店市2000年度上学期期中考试八年级数学试题
修文二中初二上册期末考卷
八年级数学相似三角形练习题2
初二数学试卷
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |