初中数学《弧长及扇形的面积》教案_答题技巧 - 查字典数学网
数学初中数学《弧长及扇形的...
首页>学习园地>答题技巧>初中数学《...

初中数学《弧长及扇形的面积》教案

2016-10-26 收藏

27.4弧长及扇形的面积

教学目标

(一)教学知识点

1.经历探索弧长计算公式及扇形面积计算公式的过程;

2.了解弧长计算公式及扇形面积计算公式,并会应用公式解决问题.

(二)能力训练要求

1.经历探索弧长计算公式及扇形面积计算公式的过程,培养学生的探索能力.

2.了解弧长及扇形面积公式后,能用公式解决问题,训练学生的数学运用能力.

(三)情感与价值观要求

1.经历探索弧长及扇形面积计算公式,让学生体验教学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.

2.通过用弧长及扇形面积公式解决实际问题,让学生体验数学与人类生活的密切联系,激发学生学习数学的兴趣,提高他们的学习积极性,同时提高大家的运用能力.

教学重点

1.经历探索弧长及扇形面积计算公式的过程.

2.了解弧长及扇形面积计算公式.

3.会用公式解决问题.

教学难点

1.探索弧长及扇形面积计算公式.

2.用公式解决实际问题.

教学方法

学生互相交流探索法

教具准备

2.投影片四张

第一张:(记作A)

第二张:(记作B)

第三张:(记作C)

第四张:(记作D)

教学过程

Ⅰ.创设问题情境,引入新课

[师]在小学我们已经学习过有关圆的周长和面积公式,弧是圆周的一部分,扇形是圆的一部分,那么弧长与扇形面积应怎样计算?它们与圆的周长、圆的面积之间有怎样的关系呢?本节课我们将进行探索.

Ⅱ.新课讲解

一、复习

1.圆的周长如何计算?

2.圆的面积如何计算?

3.圆的圆心角是多少度?

[生]若圆的半径为r,则周长l=2r,面积S=r2,圆的圆心角是360.

二、探索弧长的计算公式

投影片(A)

如图,某传送带的一个转动轮的半径为10cm.

(1)转动轮转一周,传送带上的物品A被传送多少厘米?

(2)转动轮转1,传送带上的物品A被传送多少厘米?

(3)转动轮转n,传送带上的物品A被传送多少厘米?

[师]分析:转动轮转一周,传送带上的物品应被传送一个圆的周长;因为圆的周长对应360的圆心角,所以转动轮转1,传送带上的物品A被传送圆周长的 ;转动轮转n,传送带上的物品A被传送转1时传送距离的n倍.

[生]解:(1)转动轮转一周,传送带上的物品A被传送210=20cm;

(2)转动轮转1,传送带上的物品A被传送 cm;

(3)转动轮转n,传送带上的物品A被传送n =cm.

[师]根据上面的计算,你能猜想出在半径为R的圆中,n的圆心角所对的弧长的计算公式吗?请大家互相交流.

[生]根据刚才的讨论可知,360的圆心角对应圆周长2R,那么1的圆心角对应的弧长为 ,n的圆心角对应的弧长应为1的圆心角对应的弧长的n倍,即n .

[师]表述得非常棒.

在半径为R的圆中,n的圆心角所对的弧长(arclength)的计算公式为:

l= .

下面我们看弧长公式的运用.

三、例题讲解

投影片(B)

制作弯形管道时,需要先按中心线计算“展直长度”再下料,试计算下图中管道的展直长度,即 的长(结果精确到0.1mm).

分析:要求管道的展直长度,即求 的长,根根弧长公式l= 可求得 的长,其中n为圆心角,R为半径.

解:R=40mm,n=110.

的长= R= 4076.8mm.

因此,管道的展直长度约为76.8mm.

四、想一想

投影片(C)

在一块空旷的草地上有一根柱子,柱子上拴着一条长3m的绳子,绳子的另一端拴着一只狗.

(1)这只狗的最大活动区域有多大?

(2)如果这只狗只能绕柱子转过n角,那么它的最大活动区域有多大?

[师]请大家互相交流.

[生](1)如图(1),这只狗的最大活动区域是圆的面积,即9;

(2)如图(2),狗的活动区域是扇形,扇形是圆的一部分,360的圆心角对应的圆面积,1的圆心角对应圆面积的 ,即 = ,n的圆心角对应的圆面积为n = .

[师]请大家根据刚才的例题归纳总结扇形的面积公式.

[生]如果圆的半径为R,则圆的面积为R2,1的圆心角对应的扇形面积为 ,n的圆心角对应的扇形面积为n .因此扇形面积的计算公式为S扇形= R2,其中R为扇形的半径,n为圆心角.

五、弧长与扇形面积的关系

[师]我们探讨了弧长和扇形面积的公式,在半径为R的圆中,n的圆心角所对的弧长的计算公式为l= R,n的圆心角的扇形面积公式为S扇形= R2,在这两个公式中,弧长和扇形面积都和圆心角n.半径R有关系,因此l和S之间也有一定的关系,你能猜得出吗?请大家互相交流.

[生]∵l= R,S扇形= R2,

R2= RR.S扇形= lR.

六、扇形面积的应用

投影片(D)

扇形AOB的半径为12cm,AOB=120,求 的长(结果精确到0.1cm)和扇形AOB的面积(结果精确到0.1cm2)

分析:要求弧长和扇形面积,根据公式需要知道半径R和圆心角n即可,本题中这些条件已经告诉了,因此这个问题就解决了.

解: 的长= 1225.1cm.

S扇形= 122150.7cm2.

因此, 的长约为25.1cm,扇形AOB的面积约为150.7cm2.

Ⅲ.课堂练习

随堂练习

Ⅳ.课时小结

本节课学习了如下内容:

1.探索弧长的计算公式l= R,并运用公式进行计算;

2.探索扇形的面积公式S= R2,并运用公式进行计算;

3.探索弧长l及扇形的面积S之间的关系,并能已知一方求另一方.

Ⅴ.课后作业

习题节选

Ⅵ.活动与探究

如图,两个同心圆被两条半径截得的 的长为6 cm, 的长为10 cm,又AC=12cm,求阴影部分ABDC的面积.

分析:要求阴影部分的面积,需求扇形COD的面积与扇形AOB的面积之差.根据扇形面积S= lR,l已知,则需要求两个半径OC与OA,因为OC=OA+AC,AC已知,所以只要能求出OA即可.

解:设OA=R,OC=R+12,O=n,根据已知条件有:

得 .

3(R+12)=5R,R=18.

OC=18+12=30.

S=S扇形COD-S扇形AOB= 1030- 18=96 cm2.

所以阴影部分的面积为96 cm2.

板书设计

27.4弧长及扇形的面积

一、1.复习圆的周长和面积计算公式;

2.探索弧长的计算公式;

3.例题讲解;

4.想一想;

5.弧长及扇形面积的关系;

6.扇形面积的应用.

二、课堂练习

三、课时小结

四、课后作业

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
大家都在看

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限