2016-10-26
收藏
1.在△ABC中,A=60,a=43,b=42,则()
A.B=45或135 B.B=135
C.B=45 D.以上答案都不对
解析:选C.sin B=22,∵a>b,B=45.
2.△ABC的内角A,B,C的对边分别为a,b,c,若c=2,b=6,B=120,则a等于()
A.6 B.2
C.3 D.2
解析:选D.由正弦定理6sin 120=2sin Csin C=12,
于是C=30A=30a=c=2.
3.在△ABC中,若tan A=13,C=150,BC=1,则AB=__________.
解析:在△ABC中,若tan A=13,C=150,
A为锐角,sin A=110,BC=1,
则根据正弦定理知AB=BCsin Csin A=102.
答案:102
4.已知△ABC中,AD是BAC的平分线,交对边BC于D,求证:BDDC=ABAC.
证明:如图所示,设ADB=,
则ADC=-.
在△ABD中,由正弦定理得:
BDsin A2=ABsin ,即BDAB=sinA2sin ;①
在△ACD中,CDsin A2=ACsin-,
CDAC=sinA2sin .②
由①②得BDAB=CDAC,
BDDC=ABAC.
一、选择题
1.在△ABC中,a=5,b=3,C=120,则sin A∶sin B的值是()
A.53 B.35
C.37 D.57
解析:选A.根据正弦定理得sin Asin B=ab=53.
2.在△ABC中,若sin Aa=cos Cc,则C的值为()
A.30 B.45
C.60 D.90
解析:选B.∵sin Aa=cos Cc,sin Acos C=ac,
又由正弦定理ac=sin Asin C.
cos C=sin C,即C=45,故选B.
3.(2010年高考湖北卷)在△ABC中,a=15,b=10,A=60,则cos B=()
A.-223 B.223
C.-63 D.63
解析:选D.由正弦定理得15sin 60=10sin B,
sin B=10sin 6015=103215=33.
∵a>b,A=60,B为锐角.
cos B=1-sin2B=1-332=63.
4.在△ABC中,a=bsin A,则△ABC一定是()
A.锐角三角形 B.直角三角形
C.钝角三角形 D.等腰三角形
解析:选B.由题意有asin A=b=bsin B,则sin B=1,即角B为直角,故△ABC是直角三角形.
5.在△ABC中,角A、B、C的对边分别为a、b、c,已知A=3,a=3,b=1,则c=()
A.1 B.2
C.3-1 D.3
解析:选B.由正弦定理asin A=bsin B,可得3sin3=1sin B,
sin B=12,故B=30或150.
由a>b,得A>B,B=30.
故C=90,由勾股定理得c=2.
6.(2011年天津质检)在△ABC中,如果A=60,c=4,a=4,则此三角形有()
A.两解 B.一解
C.无解 D.无穷多解
解析:选B.因csin A=23<4,且a=c,故有唯一解.
二、填空题
7.在△ABC中,已知BC=5,sin C=2sin A,则AB=________.
解析:AB=sin Csin ABC=2BC=25.
答案:25
8.在△ABC中,B=30,C=120,则a∶b∶c=________.
解析:A=180-30-120=30,
由正弦定理得:
a∶b∶c=sin A∶sin B∶sin C=1∶1∶3.
答案:1∶1∶3
9.(2010年高考北京卷)在△ABC中,若b=1,c=3,C=23,则a=________.
解析:由正弦定理,有3sin23=1sin B,
sin B=12.∵C为钝角,
B必为锐角,B=6,
A=6.
a=b=1.
答案:1
三、解答题
10.在△ABC中,已知sin A∶sin B∶sin C=4∶5∶6,且a+b+c=30,求a.
解:∵sin A∶sin B∶sin C=a2R∶b2R∶c2R=a∶b∶c,
a∶b∶c=4∶5∶6.a=30415=8.
11.在△ABC中,角A,B,C所对的三边分别为a,b,c.已知a=5,b=2,B=120,解此三角形.
解:法一:根据正弦定理asin A=bsin B,得sin A=asin Bb=5322=534>1.所以A不存在,即此三角形无解.
法二:因为a=5,b=2,B=120,所以A>B=120.所以A+B>240,这与A+B+C=180矛盾.所以此三角形无解.
法三:因为a=5,b=2,B=120,所以asin B=5sin 120=532,所以b<asin B.又因为若三角形存在,则bsin A=asin B,得b>asin B,所以此三角形无解.
12.在△ABC中,acos(2-A)=bcos(2-B),判断△ABC的形状.
解:法一:∵acos(2-A)=bcos(2-B),
asin A=bsin B.由正弦定理可得:aa2R=bb2R,
a2=b2,a=b,△ABC为等腰三角形.
法二:∵acos(2-A)=bcos(2-B),
asin A=bsin B.由正弦定理可得:
2Rsin2A=2Rsin2B,即sin A=sin B,
A=B.(A+B=不合题意舍去)
故△ABC为等腰三角形.
初一数学平行线与相交线导学案
基本平面图形复习教案
有理数及其运算复习教案
平移变换学案
有理数及其运算复习教案思路
相似变换学案
整式的加减(二)学案
初一同底数幂的乘法的教案
新版初一数学下册第二章平行线与相交线导学案
数学第三章第一节认识三角形
整式的加减(2)教案
整式的乘除导学案
可能性和概率教案
整式的加减(一)学案
数学平行线与相交线教案
几何图形初步教案设计
初一上册数学知识点总结
整式的除法教案
初一数学基本平面图形复习教案
旋转变换学案
几何图形初步教案
数学利用平方差公式分解因式教案
不等式的解集 教学设计方案
同底数幂的乘法
探索直线平行的条件(1)学案
数学探索轴对称的性质学案
利用轴对称设计图案学案
一元一次方程复习教案
新版初一数学下册第三章三角形导学案
完全平方公式教学案
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |