2016-10-26
收藏
函数f(x)=9-ax2(a>0)在[0,3]上的最大值为()
A.9 B.9(1-a)
C.9-a D.9-a2
解析:选A.x[0,3]时f(x)为减函数,f(x)max=f(0)=9.
2.函数y=x+1-x-1的值域为()
A.(-,2 ] B.(0,2 ]
C.[2,+) D.[0,+)
解析:选B.y=x+1-x-1,x+10x-10,
x1.
∵y=2x+1+x-1为[1,+)上的减函数,
f(x)max=f(1)=2且y>0.
3.函数f(x)=x2-2ax+a+2在[0,a]上取得最大值3,最小值2,则实数a为()
A.0或1 B.1
C.2 D.以上都不对
解析:选B.因为函数f(x)=x2-2ax+a+2=(x-a)2-a2+a+2, 对称轴为x=a,开口方向向上,所以f(x)在[0,a]上单调递减,其最大值、最小值分别在两个端点处取得,即f(x)max=f(0)=a+2=3,
f(x)min=f(a)=-a2+a+2=2.故a=1.
4.(2010年高考山东卷)已知x,yR+,且满足x3+y4=1.则xy的最大值为________.
解析:y4=1-x3,0<1-x3<1,0<x<3.
而xy=x4(1-x3)=-43(x-32)2+3.
当x=32,y=2时,xy最大值为3.
答案:3
1.函数f(x)=x2在[0,1]上的最小值是()
A.1 B.0
C.14 D.不存在
解析:选B.由函数f(x)=x2在[0,1]上的图象(图略)知,
f(x)=x2在[0,1]上单调递增,故最小值为f(0)=0.
2.函数f(x)=2x+6,x[1,2]x+7,x[-1,1],则f(x)的最大值、最小值分别为()
A.10,6 B.10,8
C.8,6 D.以上都不对
解析:选A.f(x)在x[-1,2]上为增函数,f(x)max=f(2)=10,f(x)min=f(-1)=6.
3.函数y=-x2+2x在[1,2]上的最大值为()
A.1 B.2
C.-1 D.不存在
解析:选A.因为函数y=-x2+2x=-(x-1)2+1.对称轴为x=1,开口向下,故在[1,2]上为单调递减函数,所以ymax=-1+2=1.
4.函数y=1x-1在[2,3]上的最小值为()
A.2 B.12
C.13 D.-12
解析:选B.函数y=1x-1在[2,3]上为减函数,
ymin=13-1=12.
5.某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L1=-x2+21x和L2=2x,其中销售量(单位:辆).若该公司在两地共销售15辆,则能获得的最大利润为()
A.90万元 B.60万元
C.120万元 D.120.25万元
解析:选C.设公司在甲地销售x辆(015,x为正整数),则在乙地销售(15-x)辆,公司获得利润L=-x2+21x+2(15-x)=-x2+19x+30.当x=9或10时,L最大为120万元,故选C.
6.已知函数f(x)=-x2+4x+a,x[0,1],若f(x)有最小值-2,则f(x)的最大值为()
A.-1 B.0
C.1 D.2
解析:选C.f(x)=-(x2-4x+4)+a+4=-(x-2)2+4+a.
函数f(x)图象的对称轴为x=2,
f(x)在[0,1]上单调递增.
又∵f(x)min=-2,
f(0)=-2,即a=-2.
f(x)max=f(1)=-1+4-2=1.
7.函数y=2x2+2,xN*的最小值是________.
解析:∵xN*,x21,
y=2x2+24,
即y=2x2+2在xN*上的最小值为4,此时x=1.
答案:4
8.已知函数f(x)=x2-6x+8,x[1,a],并且f(x)的最小值为f(a),则实数a的取值范围是________.
解析:由题意知f(x)在[1,a]上是单调递减的,
又∵f(x)的单调减区间为(-,3],
13.
答案:(1,3]
9.函数f(x)=xx+2在区间[2,4]上的最大值为________;最小值为________.
解析:∵f(x)=xx+2=x+2-2x+2=1-2x+2,
函数f(x)在[2,4]上是增函数,
f(x)min=f(2)=22+2=12,
f(x)max=f(4)=44+2=23.
答案:23 12
10.已知函数f(x)=x2 -1211x 1<x2,
求f(x)的最大、最小值.
解:当-121时,由f(x)=x2,得f(x)最大值为f(1)=1,最小值为f(0)=0;
当1<x2时,由f(x)=1x,得f(2)f(x)<f(1),
即12f(x)<1.
综上f(x)max=1,f(x)min=0.
11.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(1)当每辆车的月租金为3600元时,能租出多少辆车?
(2)当每辆车的月租金为多少元时,租赁公司的月收益最大?最大月收益是多少?
解:(1)当每辆车的月租金为3600元时,未租出的车辆数为3600-300050=12.所以这时租出了88辆车.
(2)设每辆车的月租金为x元.则租赁公司的月收益为f(x)=(100-x-300050)(x-150)-x-30005050,
整理得
f(x)=-x250+162x-21000=-150(x-4050)2+307050.
所以,当x=4050时,f(x)最大,最大值为f(4050)=307050.即当每辆车的月租金为4050元时,租赁公司的月收益最大.最大月收益为307050元.
12.求f(x)=x2-2ax-1在区间[0,2]上的最大值和最小值.
解:f(x)=(x-a)2-1-a2,对称轴为x=a.
①当a<0时,由图①可知,
f(x)min=f(0)=-1,
f(x)max=f(2)=3-4a.
②当0a<1时,由图②可知,
f(x)min=f(a)=-1-a2,
f(x)max=f(2)=3-4a.
③当12时,由图③可知,
f(x)min=f(a)=-1-a2,
f(x)max=f(0)=-1.
④当a>2时,由图④可知,
f(x)min=f(2)=3-4a,
f(x)max=f(0)=-1.
综上所述,当a<0时,f(x)min=-1,f(x)max=3-4a;
当0a<1时,f(x)min=-1-a2,f(x)max=3-4a;
当12时,f(x)min=-1-a2,f(x)max=-1;
当a>2时,f(x)min=3-4a,f(x)max=-1.
精选六年级数学上学期期中考试复习指导
解读数学六年级上册比和比例知识点
精编数学六年级第一单元知识点汇总
六年级数学人教版期中总复习之运算法则讲解
详解六年级数学代数的初步认识知识点汇总
2015小学生数学公式知识点利率问题公式
精编小学数学六年级上分数重点知识点
精选数学六年级上合数分解质因数知识点汇总
解读人教版数学六年级上第四单元圆的知识点复习概要
六年级数学上册百分数知识点精讲
各版本通用小学数学六年级上期中复习要点总结
苏教版六年级上册数学期中复习知识点(各单元精解)
精选苏教版六年级上数学方程知识点
精读六年级数学上人教版第四单元复习知识点
数学六年级期中考点圆的知识要点解析
精编六年级数学上长方体和正方体知识点
小学六年级数学上册知识点复习(人教版)
解读六年级数学应用题类型知识点
精编小学六年级数学应用题知识点
解读数学六年级上册人教版第三单元期中复习规划
精编数学六年级上第二单元复习指导大全
精编六年级数学上第二单元复习概要
解读六年级人教版数学期中考比和比例问题梳理
解读人教版六年级上数学期中考试知识纲要
2015小学六年级上册数学1单元知识点
六年级数学上册第三单元分数除法期中复习精解
精选小学数学六年级圆柱和圆锥知识点总汇
六年级数学知识点(常用单位换算)
精编数学六年级上第一单元知识点复习
人教版六年级数学上册第一单元位置知识点
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |