三垂线定理,平面内的一条直线,如果与穿过这个平面的一条斜线在这个平面上的射影垂直,那么它也和这条斜线垂直。
线面垂直证明
已知:如图,PO在α上的射影OA垂直于a。求证:OP⊥a
证明:过P做PA垂直于α
∵PA⊥α且a⊆α
∴a⊥PA
又a⊥OA
OA∩PA=A
∴a⊥平面POA
∴a⊥OP
用向量证明
1.已知:PO,PA分别是平面α的垂线,斜线,OA是PA在α内的射影,向量b包含于α,且向量b垂直于OA,求证:向量b垂直于PA
证明:∵PO垂直于α,∴PO垂直于b,又∵OA垂直b,向量PA=(向量PO+向量OA)
∴向量PA·向量b=(向量PO+向量OA)·向量b=(向量PO·向量b)+(向量OA·向量b )=0,∴PA⊥向量b。
2.已知三个平面OAB,OBC,OAC相交于一点O,∠AOB=∠BOC=∠COA=60度,求交线OA与平面OBC所成的角。
解:∵向量OA=(向量OB+向量AB),O是内心,又∵AB=BC=CA,∴OA与平面OBC所成的角是30°。
三余弦定理
三余弦定理:平面内的一条直线与该平面的一条斜线所成角的余弦值,等于斜线与平面所成角的余弦值乘以斜线在平面上的射影与该直线所成角的余弦值。
例如:OP是平面OAB的一条斜线,且OP在面上的射影是OC。若∠POC=α(斜线与平面所成角),AB与OC所成角为β(射影与直线所成角),OP与AB所成角为γ(直线与斜线所成角),则cosγ=cosαcosβ
显然,三垂线定理就是当β=90°的情况。直线垂直射影有cosβ=0,因此cosγ=0,即直线与斜线也垂直。