2016-10-25 收藏
一、教学过程
(一)复习提问
1.什么叫二次根式?
2.下列各式是二次根式,求式子中的字母所满足的条件:
(3)∵x取任何值都有2x2≥0,所以2x2+10,故x的取值为任意实数.
(二)二次根式的简单性质
上节课我们已经学习了二次根式的定义,并了解了第一个简单性质
我们知道,正数a有两个平方根,分别记作 零的平方根是零。引导学生总结出,其中, 就是一个非负数a的算术平方根。将符号“ ”看作开平方求算术平方根的运算, 看作将一个数进行平方的运算,而开平方运算和平方运算是互为逆运算,因而有: 这里需要注意的是公式成立的条件是a≥0,提问学生,a可以代表一个代数式吗?
请分析:引导学生答如 时才成立。 时才成立,即a取任意实数时都成立。 我们知道 如果我们把 ,同学们想一想是否就可以把任何一个非负数写成一个数的平方形式了.
例1 计算:
分析:这个例题中的四个小题,主要是运用公式 。其中(2)、(3)、(4)题又运用了整式乘除中学习的积的幂的运算性质.结合第(2)小题中的 ,说明 ,这与带分数 。因此,以后遇到 ,应写成 ,而不宜写成 。 例2 把下列非负数写成一个数的平方的形式:
(1)5; (2)11; (3)1.6; (4)0.35.
例3 把下列各式写成平方差的形式,再分解因式:
(1)4x2-1; (2)a4-9;
(3)3a2-10; (4)a4-6a2+9.
解:(1)4x2-1
=(2x)2-12
=(2x+1)(2x-1).
(2)a4-9
=(a2)2-32
=(a2+3)(a2-3)
(3)3a2-10
(4)a4-6a2+32
=(a2)2-6a2+32
=(a2-3)2
(三)小结
1.继续巩固二次根式的定义,及二次根式中被开方数的取值范围问题.
2.关于公式 的应用。
(1)经常用于乘法的运算中.
(2)可以把任何一个非负数写成一个数的平方的形式,解决在实数范围内因式分解等方面的问题.
(四)练习和作业
练习:
1.填空
注意第(4)题需有2m≥0,m≥0,又需有-3m≥0,即m≤0,故m=0.
2.实数a、b在数轴上对应点的位置如下图所示:
分析:通过本题渗透数形结合的思想,进一步巩固二次根式的定义、性质,引导学生分析:由于a0,b0,且|a||b|.
3.计算
二、作业
教材P.172习题11.1;A组2、3;B组2.
补充作业:
下列各式中的字母满足什么条件时,才能使该式成为二次根式?
分析:要使这些式成为二次根式,只要被开方式是非负数即可,启发学生分析如下:
(1)由-|a-2b|≥0,得a-2b≤0,
但根据绝对值的性质,有|a-2b|≥0,
∴ |a-2b|=0,即a-2b=0,得a=2b.
(2)由(-m2-1)(m-n)≥0,-(m2+1)(m-n)≥0
∴ (m2+1)(m-n)≤0,又m2+10,
∴ m-n≤0,即m≤n.
说明:本题求解较难些,但基本方法仍是由二次根式中被开方数(式)大于或等于零列出不等式.通过本题培养学生对于较复杂的题的分析问题和解决问题的能力,并且进一步巩固二次根式的概念.
华师大版七年级上4.6.1角
华师大版七年级上2.8 有理数的加减混合运算
华师大版七年级上4.6角的特殊关系2
华师大版七年级上2.4绝对值(5)
华师大版七年级上4.4平面图形1
华师大版七年级上2.3相反数3
华师大版七年级上4.1-4.6图形的初步认识
华师大版七年级上2.6有理数的加法
华师大版七年级上3.4整式的加减(第4课时)添括号法则
华师大版七年级上4.5.1点和线
华师大版七年级上2.3 相反数(1)
华师大版七年级上2.4 绝对值(2)
华师大版七年级上4.6.2角的比较和运算
华师大版七年级上2.11 有理数的乘方(2)
华师大版七年级上2.11 有理数的乘方(3)
华师大版七年级上3.4整式的加减(第3课时)去括号法则
华师大版七年级上2.3相反数
华师大版七年级上4.2.1 由立体图形到三视图
华师大版七年级上2.6.1有理数的加法(一)
华师大版七年级上2.10有理数的除法
华师大版七年级上2.9.2有理数的乘法运算律
华师大版七年级上4.2画立体图形
华师大版七年级上2.3 相反数(2)
华师大版七年级上3.4整式的加减(第2课时)合并同类项
华师大版七年级上2.7有理数的减法
华师大版七年级上2.4绝对值(4)
华师大版七年级上2.4 绝对值(1)
华师大版七年级上2.2 数轴
华师大版七年级上1.1与数学交朋友
华师大版七年级上2.2数轴――在数轴上比较数的大小
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |