八年级数学教案示例:等腰三角形的性质_试卷分析 - 查字典数学网
数学八年级数学教案示例:等...
首页>教学经验>试卷分析>八年级数学...

八年级数学教案示例:等腰三角形的性质

2016-10-25 收藏

知识结构

八年级数学教案示例:等腰三角形的性质1 重点与难点分析:

本节内容的重点是等腰三角形的性质及其推论。等腰三角形两底角相等(等边对等角)是证明同一三角形中两角相等的重要依据;而在推论中提到的等腰三角形底边上的高、中线及顶角平分线三线合一这条重要性质也是证明两线段相等,两个角相等及两直线互相垂直的重要依据。等腰三角形的性质为证明线段相等,角相等或垂直平提供了方法,在选择时注意灵活运用。

本节内容的难点是文字题的证明。对文字题的证明,首先分析出命题的题设和结论,结合题意画出草图形,然后根据图形写出已知、求证,做到不重不漏,从而转化为一般证明题。这些环节是学生感到困难的。

教法建议:

数学教学的核心是学生的“再创造”.根据这一指导思想,本节课教学可通过精心设置的一个个问题链,激发学生的求知欲,最终在老师的指导下发现问题、解决问题.为了充分调动学生的积极性,使学生变被动学习为主动学习,本课教学拟用启发式问题教学法.具体说明如下:

(1)发现问题

本节课开始,先投影显示图形及问题,让学生观察并发现结论。提出问题让学生思考,创设问题情境,激发学生学习的欲望和要求.

(2)解决问题

对所得到的结论通过教师启发,让学生完成证明.指导学生归纳总结,从而顺其自然得到本节课的一个定理及其两个推论. 多让学生亲自实践,参与探索发现,领略知识形成过程,这是课堂教学的基本思想和教学理念.

(3)加深理解

学生学习的过程是对知识的消化和理解的过程,通过例题的解决,提高和完善对定理及其推论理解。这一过程采用讲练结合、适时点拨的教学方法,把学生的注意力紧紧吸引在解决问题身上,让学生的思维活动在老师的引导下层层展开,让学生大胆参与课堂教学,使他们“听”有所“思”、“练”有所“获”,使传授知识与培养能力融为一体。一.教学目标:

1.掌握等腰三角形的性质定理的证明及这个定理的两个推论;

2.会运用等腰三角形的性质证明线段相等;

3.使学生掌握一般文字题的证明;

4.通过文字题的证明,提高学生几何三种语言的互译能力;

5.逐步培养学生逻辑思维能力及分析实际问题解决问题的能力;

6.渗透对称的数学思想,培养学生数学应用的观点;

二.教学重点:等腰三角形的性质及其推论

三.教学难点:文字题的证明

四.教学用具:直尺,微机

五.教学方法:问题探究法

六.教学过程:

1、 性质定理的发现与证明

(1)投影显示:

八年级数学教案示例:等腰三角形的性质2 一般学生都能发现等腰三角形的两个底角相等(若有其它发现也要给予肯定),

(2)提醒学生:凭观察作出的判断准确吗?怎样证明你的判断?

师生讨论后,确定用全等三角形证明,学生亲自动手作出证明.证明略.

教师指出:等腰三角形的性质定理提示了三角形边与角的转化关系,由两边相等转化为两角相等,这是今后证明两角相等常用的依据,其功效不亚于利用全等三角形证明两角相等.

2、推论1的发现与证明

投影显示:

八年级数学教案示例:等腰三角形的性质3 由学生观察发现,等腰三角形顶角平分线平分底边并且垂直于底边.

启发学生自己归纳得出:顶角平分线、底边上的中线、底边上的高互相重合.

学生口述证明过程.

教师指出:等腰三角形的顶角的平分线,底边上的中线、底边上的高这“三线合一”的性质有多重功能,可以证明两线段相等,两个角相等以及两条直线的互相垂直,也可证线段成角的倍分问题。

3、推论2的发现与证明

投影显示:

八年级数学教案示例:等腰三角形的性质4 一般学生都能发现等边三角形的三个内角都为 八年级数学教案示例:等腰三角形的性质5 .然后启发学生与等腰三角形的“三线合一”作类比,自己得出等边三角形的“三线合一”. 4、定理及其推论的应用

八年级数学教案示例:等腰三角形的性质6 解:(1) 八年级数学教案示例:等腰三角形的性质7 (2)另外两内角分别为: 八年级数学教案示例:等腰三角形的性质8 (3) 八年级数学教案示例:等腰三角形的性质9 小结:渗透分类思想,培养思维的严密性.

例2、 八年级数学教案示例:等腰三角形的性质10 已知:如图,点D、E在△ABC的边BC上,AB=AC,AD=AE 求证:BD=CE

证明:作AF⊥BC,,垂足为F,则AF⊥DE

∵AB=AC,AD=AE(已知)

AF⊥BC,AF⊥DE(辅助线作法)

∴BF=CF,DF=EF(等腰三角形底边上的高与底边上的中线互相重合)

∴BD=CE

强调说明:等腰三角形中的“三线合一”常常作为解决等腰三角形问题的辅助线,添加辅助线时,有时作顶角的平分线,有时作底边中线,有时作底边的高,有时作哪条线都可以,有时却不能,还要根据实际情况来定.

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
大家都在看

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限