高中数学:四大解题思想很重要_名师指点 - 查字典数学网
数学高中数学:四大解题思想...
首页>学习园地>名师指点>高中数学:...

高中数学:四大解题思想很重要

2016-09-13 收藏

分类讨论思想、数形结合思想、函数与方程、转化与划归思想是高中数学四大非常重要的思想,是同学们学好数学的保障,突破高分的门槛。它们贯穿于高中数学的整个学习过程中,同时也是高考数学必考的数学思想方法。所以,学好高中数学,突破数学高分,必须有这四大思想方法的保驾护航。

数学思想方法之分类讨论

分类讨论思想具有较高的逻辑性及很强的综合性,纵观近几年的高考数学真题,不管是文科还是理科,同学们在解决最后的数学综合问题时,基本上都需要分类讨论。本节课老师给同学们深度剖析了分类讨论思想,并结合典型例题引导同学们树立分类讨论思想,教会同学们如何灵活运用分类讨论思想解决数学问题。

数学思想方法之数形结合

数形结合思想是借助于数学图形解决数学问题,它可以使复杂的问题简单化,抽象的问题直观化,是解决综合问题的得力助手。正是因为数形结合的这种优越性,它已经成为高考必考的数学思想方法。在这节课中,老师通过典例精析给同学们总结了数形结合思想在高中数学各个板块中的灵活运用,帮助你形成数形结合的思维方式,突破数学难题。

数学思想方法之函数

函数与方程思想是非常重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多;

数学思想方法之方程、转化与化归

转化与化归思想在高考中也占有十分重要的地位,数学问题的解决,总离不开转化与化归.本节课老师给大家总结并分析了函数与方程思想以及转化与化归思想的常见题型,并重点讲解了函数与方程、转化与化归在解题中的灵活运用。

如果同学们这四种数学思想都能掌握的很好,那么你一定会成为解决数学问题的高手。

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
大家都在看

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限