高二上学期数学教学计划模板:直线的方程_课题研究 - 查字典数学网
数学高二上学期数学教学计划...
首页>数学教研>课题研究>高二上学期...

高二上学期数学教学计划模板:直线的方程

2016-09-12 收藏

尽快地掌握学习知识迅速提高学习能力,由查字典数学网为您提供的高二上学期数学教学计划模板,希望给您带来启发!

教学目标

(1)掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程.

(2)理解直线方程几种形式之间的内在联系,能在整体上把握直线的方程.

(3)掌握直线方程各种形式之间的互化.

(4)通过直线方程一般式的教学培养学生全面、系统、周密地分析、讨论问题的能力.

(5)通过直线方程特殊式与一般式转化的教学,培养学生灵活的思维品质和辩证唯物主义观点.

(6)进一步理解直线方程的概念,理解直线斜率的意义和解析几何的思想方法.

教学建议

1.教材分析

(1)知识结构

由直线方程的概念和直线斜率的概念导出直线方程的点斜式;由直线方程的点斜式分别导出直线方程的斜截式和两点式;再由两点式导出截距式;最后都可以转化归结为直线的一般式;同时一般式也可以转化成特殊式.

(

不同时为0)的对应关系及其证明.

教学用具:计算机

教学方法:启发引导法,讨论法

教学过程:

下面给出教学实施过程设计的简要思路:

教学设计思路:

(一)引入的设计

前边学习了如何根据所给条件求出直线方程的方法,看下面问题:

问:说出过点

,属于二元一次方程,因为未知数有两个,它们的最高次数为一次.

肯定学生回答,并纠正学生中不规范的表述.再看一个问题:

问:求出过点

的直线的方程,并观察方程属于哪一类,为什么?

答:直线方程是

肯定学生回答后强调“也是二元一次方程,都是因为未知数有两个,它们的最高次数为一次”.

启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论.

学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:

【问题1】“任意直线的方程都是二元一次方程吗?”

(二)本节主体内容教学的设计

这是本节课要解决的第一个问题,如何解决?自己先研究研究,也可以小组研究,确定解决问题的思路.

学生或独立研究,或合作研究,教师巡视指导.

经过一定时间的研究,教师组织开展集体讨论.首先让学生陈述解决思路或解决方案:

思路一:…

思路二:…

……

教师组织评价,确定最优方案(其它待课下研究)如下:

按斜率是否存在,任意直线

存在或不存在.

的截距

的方程可表示为

不存在时,直线

形式的方程,它是二元一次方程吗?

学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:

平面直角坐标系中直线

解的形式也是二元方程的解的形式,因此把它看成形如

的形式,准确地说应该是“要么形如

这样的方程”.

同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?

学生们不难得出:二者可以概括为统一的形式.

这样上边的结论可以表述如下:

在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如

(其中

不同时为0)的二元一次方程都表示一条直线吗?

不难看出上边的结论只是直线与方程相互关系的一个方面,这个问题是它的另一方面.这是显然的吗?不是,因此也需要像刚才一样认真地研究,得到明确的结论.那么如何研究呢?

师生共同讨论,评价不同思路,达成共识:

回顾上边解决问题的思路,发现原路返回就是非常好的思路,即方程

是否为0恰好对应斜率

时,方程可化为

、在

的直线.

(2)当

,方程可化为

轴垂直的直线.

因此,得到结论:

在平面直角坐标系中,任何形如

(其中

不同时为0)称作直线方程的一般式是合理的.

【动画演示】

演示“直线各参数.gsp”文件,体会任何二元一次方程都表示一条直线.

至此,我们的第二个问题也圆满解决,而且我们还发现上述两个问题其实是一个大问题的两个方面,这个大问题揭示了直线与二元一次方程的对应关系,同时,直线方程的一般形式是对直线特殊形式的抽象和概括,而且抽象的层次越高越简洁,我们还体会到了特殊与一般的转化关系.

(三)练习巩固、总结提高、板书和作业等环节的设计在此从略

查字典数学网为大家编辑的高二上学期数学教学计划模板,大家仔细品味了吗?祝大家学期生活愉快。

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限