2019-08-20
收藏
七 百分数的应用
一、百分数的应用(一)
1.确定单位“1”的方法:与哪个量相比,那个量就是单位“1”。
2.求一个数比另一个数多(或少)百分之几的方法:
(1)先求一个数比另一个数多(或少)的具体量,再除以单位“1”的量,即两数差量÷单位“1”的量;
(2)把另一个数看作单位“1”,即100%。
二、百分数的应用(二)
1. 求“比一个数增加(减少)百分之几的数是多少”的方法:
方法一:先求出增加(减少)部分的具体数量,然后用单位“1”所对应的具体数量加上(减去)增加(减少)部分的具体数量。
方法二:先求出增加(减少)后的数量是单位“1”的百分之几,然后用单位“1”所对应的具体数量乘这个百分数。
2. 成数的意义。
在工农业生产和日常生活中经常用到成数,成数可以表示各行各业的发展变化情况。“几成”就是十分之几,也就是百分之几十。
3.解决成数问题的方法。
解决成数的问题,关键是先将成数转化为百分数,然后按照百分数问题的解法进行解答。
三、百分数的应用(三)
1. 已知两个部分量的差(和)及两个部分量对应的百分数,求总量,这类问题用方程解有两种方法:
(1)A%x±B%x=两个部分量的差(和);
(2)(A%±B%)x=两个部分量的差(和)。(x代表总量;A%代表较大的部分量所占的百分数;B%代表较小的部分量所占的百分数)
2.用方程解“已知比一个数增加百分之几的数是多少,求这个数”的问题有两种解答方法:
(1)单位“1”的量×(1+比单位“1”多的百分率)=已知量;
(2)单位“1”的量+单位“1”的量×比单位“1”多的百分率=已知量。
3. 用方程解“已知一个部分量占总量的百分之几及另一个部分量,求总量”的问题有两种解答方法:
(1)总量×(1-已知部分量占总量的百分率)=另一部分量;
(2)总量-总量×已知部分量占总量的百分率=另一部分量。
四、百分数的应用(四)
1.本金、利息、利率的含义。
(1)存入银行的钱叫作本金。
(2)取款时银行多支付的钱叫作利息。
(3)利息与本金的比值叫作利率(利率有按年计算的,有按月计算的。利率按年计算的通常称作年利率,利率按月计算的通常称作月利率)。
2.利息的计算公式:利息=本金×利率×时间。
3.已知利息、利率、时间,求本金:因为利息=本金×利率×时间,可以利用乘法各部分间的关系进行推导,得出本金=利息÷利率÷时间,也可以把本金用x表示,以利息的公式为“等量关系”,列方程解答。
4.已知利息、本金、利率,求时间:因为利息=本金×利率×时间,可以利用乘法各部分间的关系进行推导,得出时间=利息÷本金÷利率,也可以把时间用x表示,以利息的公式为“等量关系”,列方程解答。
5.已知利息、本金、时间,求利率:因为利息=本金×利率×时间,可以利用乘法各部分间的关系进行推导,得出利率=利息÷本金÷时间,也可以把利率用x表示,以利息的公式为“等量关系”,列方程解答。
《分数乘除混合运算》教学设计
北师大版数学《图案设计》教学设计
《长方体和正方体的认识》教学案例
《圆的面积》教学思路及教学课案评析
《圆锥的体积计算》教学案例
人教版《圆的认识》教学设计二
苏教版数学六年级上册教材分析全册教材安排
《包装的学问》教学设计
北师大版《比的应用》教学设计
《比的认识》教学设计
西师版《圆的认识》教学设计
《鸡兔同笼问题》教学设计
《分数除以分数》教学设计
北师大版《搭一搭》教学设计
《利息》教学设计
比例尺
小学数学《折扣》教学案例
《用替换的策略解决问题》教学设计
北师大版《图形的变换》教学设计
人教版数学《扇形统计图》教学设计
《分数乘整数》教学设计
《图形的旋转》教学设计
苏教版数学《分数与整数相乘》教学设计
北师大版小学数学《化简比》教学设计
北师大版《比的化简》教学设计
《长方体和正方体的表面积》教学设计及反思
北师大版《生活中的比》教学设计及反思
《百分数的意义和写法》教学设计
《分数除以整数》教学设计
《百分数的意义和读写法》教学设计
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |