2017-02-23
收藏
利用多边形的内角和与外角和公式解题例析
利用多边形的内角和来解决问题是我们在解题时经常遇到的,而知道多边形的外角和是多少也同样重要.在学习中我们知道任意多边形的外角和都为360°,内角和公式为(n-2)180°,利用这两个知识点可以解决多边形的内角、外角、边数及对角线等问题,现就一些例题进行一下例析.
一.求多边形的边数
例1.一个正多边形的内角和是900°,则这个多边形的边数是_________.
分析:设此多边形边数为n,利用多边形内角和公式,得到(n-2)180°=900°,解得n=7,所以这个多边形的边数为7.
例2.一个多边形的内角和与外角和相等,那么这个多边形是__________.
分析:设多边形边数为n,其内角和为(n-2)180°,外角和为360°,因为这个多边形内、外角和相等,可得(n-2)180°=360°解得n=4.所以这个多边形是四边形.
例3.如果正多边形的一个外角为72°,那么它的边数是( )
分析:其中一种思考方法为:因为多边形的外角和为360°,而一个外角为72°,所以它的边数
为360°÷72°=5;另一种思考方法为:因为正多边形的一个外角为72°,可以得出与它相邻的内角为180°-72°=108°,因多边形的内角和为(n-2)180°,可得(n-2)180°=108°n,解这个方程得:n=5.
例4.一个多边形的内角和是外角和的4倍,求这个多边形的边数.
分析:此题可设多边形的边数为n,因为多边形内角和为(n-2)180°,多边形的外角和为360°,所以根据题意可得:(n-2)180°=360°×4,解得n=10.所以这个多边形的边数为10.
二.求多边形的内角度数
例3:正六边形每个内角的度数为_________.
分析:因为多边形的外角和为360°,所以正六边形每个外角的度数为 ,所以每个内角的度数为180°-60°=120°;此题也可利用多边形的内角和来解为 .
三.求多边形对角线的条数
例4:一个多边形的每个外角都为36°,则这个多边形的对角线有_______条.
分析:因为这个多边形的每个外角都是36°,所以这个多边形是正多边形.设这个正多边形的边数为n,则n= ,所以这个多边形是正十边形.因为多边形对角线的总条数为 ,所以这个多边形的对角线的条数为 .
四.实际应用
1.某装修公司到商场买同样一种多边形的地砖平铺地面,在以下四种地砖中,你认为该公司不能
买( )
A 正三角形的地砖 B 正方形地砖 C 正五边形地砖 D 正六边形地砖
分析:要使买的同样一种多边形的地砖能平铺地面,则它的几个角能构成360°,因正三角形三个内角和为180°,所以它符合标准;正方形的四个内角和为360°,所以它也符合要求;而正五边形它的一个内角为108°,360°不能被108°整除,所以正五边形不符合要求;用同样的道理可知正六边形符合要求.所以此题选C.
同学们通过以上分析,相信你对于有关利用三角形内角和与外角和进行解题的题型已经掌握得很好了,相信自己一定能行!
小升初数学综合练习题
2016年二年级下册数学期末试卷(苏教版)
2016年三年级下册数学期末模拟试题(北师大版)
2016年湘教版三年级下册数学期末测试题
人教版2014年小升初数学模拟试题
2016六年级期末数学知识点之常用数量关系式
2016数学六年级期末考试知识点之统计
2016年第二学期人教版二年级数学下册期末试卷
小升初数学能力训练练习题
14年六年级数学综合检测题
2016二年级数学期末考点表内除法
北大附中小升初数学考试试题
复式统计表
小升初数学综合能力训练
2016二年级数学期末重点复习之万以内的数
2015—2016学年三年级数学下册期末试卷(西师版)
14年小升初数学考试试卷
2016二年级数学下册期末调研检测试卷(苏教版)
2016必备小升初数学乘法原理
2016二年级数学下册期末试题(北师大)
小学三年级下册数学《平年、闰年》教案
2014年郑州名校小升初数学模拟题
2016小学二年级数学下册期末考试除法复习
2014年小升初数学试卷精编
2016二年级数学期末认识图形知识点归纳
小升初数学毕业测试题
最新的小升初数学模拟试卷
2016六年级数学期末考试试题
最新的小升初毕业数学复习试卷
最新的小升初中数学试卷
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |