直线的点斜式方程(教学设计)_教学设计 - 查字典数学网
数学直线的点斜式方程(教学...
首页>数学教研>教学设计>直线的点斜...

直线的点斜式方程(教学设计)

2015-07-22 收藏

一、教学目标

1、知识与技能

(1)理解直线方程的点斜式、斜截式的形式特点和适用范围;

(2)能正确利用直线的点斜式、斜截式公式求直线方程。

(3)体会直线的斜截式方程与一次函数的关系.

2、过程与方法

在已知直角坐标系内确定一条直线的几何要素——直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程;学生通过对比理解“截距”与“距离”的区别。

3、情态与价值观

通过让学生体会直线的斜截式方程与一次函数的关系,进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,使学生能用联系的观点看问题。

二、教学重点、难点:

(1)重点:直线的点斜式方程和斜截式方程。

(2)难点:直线的点斜式方程和斜截式方程的应用。

三、教学设想

问    题

设计意图

师生活动

1、在直线坐标系内确定一条直线,应知道哪些条件?

使学生在已有知识和经验的基础上,探索新知。

学生回顾,并回答。然后教师指出,直线的方程,就是直线上任意一点的坐标满足的关系式。

 2、直线经过点,且斜率为。设点是直线上的任意一点,请建立之间的关系。

 

培养学生自主探索的能力,并体会直线的方程,就是直线上任意一点的坐标满足的关系式,从而掌握根据条件求直线方程的方法。

学生根据斜率公式,可以得到,当时,,即

 

    (1)

 

  教师对基础薄弱的学生给予关注、引导,使每个学生都能推导出这个方程。

 3、(1)过点,斜率是的直线上的点,其坐标都满足方程(1)吗?

  使学生了解方程为直线方程必须满两个条件。

学生验证,教师引导。

问    题

设计意图

师生活动

(2)坐标满足方程(1)的点都在经过,斜率为的直线上吗?

  使学生了解方程为直线方程必须满两个条件。

学生验证,教师引导。然后教师指出方程(1)由直线上一定点及其斜率确定,所以叫做直线的点斜式方程,简称点斜式(point slope form).

4、直线的点斜式方程能否表示坐标平面上的所有直线呢?

使学生理解直线的点斜式方程的适用范围。

  学生分组互相讨论,然后说明理由。

5、(1)轴所在直线的方程是什么?轴所在直线的方程是什么?

 

(2)经过点且平行于轴(即垂直于轴)的直线方程是什么?

 

 (3)经过点且平行于轴(即垂直于轴)的直线方程是什么?

  进一步使学生理解直线的点斜式方程的适用范围,掌握特殊直线方程的表示形式。

 教师学生引导通过画图分析,求得问题的解决。

 

 

 

6、例1的教学。

学会运用点斜式方程解决问题,清楚用点斜式公式求直线方程必须具备的两个条件:(1)一个定点;(2)有斜率。同时掌握已知直线方程画直线的方法。

教师引导学生分析要用点斜式求直线方程应已知那些条件?题目那些条件已经直接给予,那些条件还有待已去求。在坐标平面内,要画一条直线可以怎样去画。

7、已知直线的斜率为,且与轴的交点为,求直线的方程。

  引入斜截式方程,让学生懂得斜截式方程源于点斜式方程,是点斜式方程的一种特殊情形。

   学生独立求出直线的方程:

 

  (2)

 

   再此基础上,教师给出截距的概念,引导学生分析方程(2)由哪两个条件确定,让学生理解斜截式方程概念的内涵。

8、观察方程,它的形式具有什么特点?

深入理解和掌握斜截式方程的特点?

  学生讨论,教师及时给予评价。

问    题

设计意图

师生活动

9、直线轴上的截距是什么?

使学生理解“截距”与“距离”两个概念的区别。

学生思考回答,教师评价。

10、你如何从直线方程的角度认识一次函数?一次函数中的几何意义是什么?你能说出一次函数图象的特点吗?

体会直线的斜截式方程与一次函数的关系.

 

 

学生思考、讨论,教师评价、归纳概括。

11、例2的教学。

  掌握从直线方程的角度判断两条直线相互平行,或相互垂直;进一步理解斜截式方程中的几何意义。

  教师引导学生分析:用斜率判断两条直线平行、垂直结论。思考(1)时, 有何关系?(2)时,有何关系?在此由学生得出结论:

 

 

12、课堂练习第100页练习第1,2,3,4题。

巩固本节课所学过的知识。

学生独立完成,教师检查反馈。

13、小结

使学生对本节课所学的知识有一个整体性的认识,了解知识的来龙去脉。

教师引导学生概括:(1)本节课我们学过那些知识点;(2)直线方程的点斜式、斜截式的形式特点和适用范围是什么?(3)求一条直线的方程,要知道多少个条件?

14、布置作业:第106页第1题的(1)、(2)、(3)和第3、5题

巩固深化

学生课后独立完成。

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限