鸡兔同笼问题趣题(1)_趣题巧解 - 查字典数学网
数学鸡兔同笼问题趣题(1)
首页>数学杂谈>趣题巧解>鸡兔同笼问题趣题(1)

鸡兔同笼问题趣题(1)

2012-11-29 收藏

1、有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?

解:我们设想,每只鸡都是“金鸡独立”,一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,·也就是

244÷2=122(只).

在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次.因此从122减去总头数88,剩下的就是兔子头数

122-88=34,

有34只兔子.当然鸡就有54只.

答:有兔子34只,鸡54只.

上面的计算,可以归结为下面算式:

总脚数÷2-总头数=兔子数.

上面的解法是《孙子算经》中记载的.做一次除法和一次减法,马上能求出兔子数,多简单!能够这样算,主要利用了兔和鸡的脚数分别是4和2,4又是2的2倍.可是,当其他问题转化成这类问题时,“脚数”就不一定是4和2,上面的计算方法就行不通.因此,我们对这类问题给出一种一般解法.

还说例1.

如果设想88只都是兔子,那么就有4×88只脚,比244只脚多了

88×4-244=108(只).

每只鸡比兔子少(4-2)只脚,所以共有鸡

(88×4-244)÷(4-2)=54(只).

说明我们设想的88只“兔子”中,有54只不是兔子.而是鸡.因此可以列出公式

鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数).

当然,我们也可以设想88只都是“鸡”,那么共有脚2×88=176(只),比244只脚少了

244-176=68(只).

每只鸡比每只兔子少(4-2)只脚,

68÷2=34(只).

说明设想中的“鸡”,有34只是兔子,也可以列出公式

兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数).

上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头数去减,就知道另一个数.

假设全是鸡,或者全是兔,通常用这样的思路求解,有人称为“假设法”.

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
大家都在看

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限