2015-04-30
收藏
一、概念步骤与方法:
1.由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.
2.用代入消元法解二元一次方程组的步骤:
(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来.
(2)把(1)中所得的方程代入另一个方程,消去一个未知数.
(3)解所得到的一元一次方程,求得一个未知数的值.
(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.
注意:⑴运用代入法时,将一个方程变形后,必须代入另一个方程,否则就会得出“0=0”的形式,求不出未知数的值.
⑵当方程组中有一个方程的一个未知数的系数是1或-1时,用代入法较简便.
3.两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
用加减消元法解二元一次方程组的基本思路仍然是“消元”.
4.用加减法解二元一次方程组的一般步骤:
第一步:在所解的方程组中的两个方程,如果某个未知数的系数互为相反数,可以把这两个方程的两边分别相加,消去这个未知数;如果未知数的系数相等,可以直接把两个方程的两边相减,消去这个未知数.
第二步:如果方程组中不存在某个未知数的系数绝对值相等,那么应选出一组系数(选最小公倍数较小的一组系数),求出它们的最小公倍数(如果一个系数是另一个系数的整数倍,该系数即为最小公倍数),然后将原方程组变形,使新方程组的这组系数的绝对值相等(都等于原系数的最小公倍数),再加减消元.
第三步:对于较复杂的二元一次方程组,应先化简(去分母,去括号,合并同类项等),通常要把每个方程整理成含未知数的项在方程的左边,常数项在方程的右边的形式,再作如上加减消元的考虑.
注意:⑴当两个方程中同一未知数的系数的绝对值相等或成整数倍时,用加减法较简便.
⑵如果所给(列)方程组较复杂,不易观察,就先变形(去分母、去括号、移项、合并等),再判断用哪种方法消元好.
5.列方程组解简单的实际问题.解实际问题的关键在于理解题意,找出数量之间的相等关系,这里的相等关系应是两个或三个,正确的列出一个(或几个)方程,再组成方程组.
平行和垂直复习课件(苏教版四年级上)
平行与相交课件(苏教版四年级上)
点到直线的距离课件(苏教版四年级上)
认数总复习(1)课件苏教版四年级上
认数总复习(4)课件苏教版四年级上
找规律复习课件(苏教版四年级上)
应用加法运算律简便计算课件(苏教版四年级上)
亿以内数的读法(2)课件(苏教版四年级上)
游戏规则的可能性课件(苏教版四年级上)
统计与可能性复习课件(苏教版四年级上)
亿以内数的读法(1)课件(苏教版四年级上)
加法交换律和结合律练习课件(苏教版四年级上)
运算律的复习(1)课件(苏教版四年级上)
含有亿级和万级的数课件(苏教版四年级上)
线段、射线和直线课件1(苏教版四年级上)
文字应用题课件(苏教版四年级上)
观察物体复习课件(苏教版四年级上)
认数复习课件(苏教版四年级上)
除加、除减课件(苏教版四年级上)
认识垂直课件(苏教版四年级上)
认识平行课件(苏教版四年级上)
简算课件(苏教版四年级上)
解决问题的策略课件(苏教版四年级上)
加法交换律和结合律课件(苏教版四年级上)
认数(1)课件(苏教版四年级上)
找规律2课件(苏教版四年级上)
认识亿级和万级的数课件(苏教版四年级上)
找规律课件(苏教版四年级上)
运算律的复习(2)课件(苏教版四年级上)
观察物体(1)课件(苏教版四年级上)
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |