高中数学平面解析几何初步检测考试题(附答案)_试卷分析 - 查字典数学网
数学高中数学平面解析几何初...
首页>教学经验>试卷分析>高中数学平...

高中数学平面解析几何初步检测考试题(附答案)

2016-10-26 收藏

第2章 平面解析几何初步 综合检测

(时间:120分钟;满分:150分)

一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的)

1.直线3ax-y-1=0与直线(a-23)x+y+1=0垂直,则a的值是()

A.-1或13  B.1或13

C.-13或-1 D.-13或1

解析:选D.由3a(a-23)+(-1)1=0,得a=-13或a=1.

2.直线l1:ax-y+b=0,l2:bx-y+a=0(a0,b0,ab)在同一坐标系中的图形大致是图中的()

解析:选C.直线l1:ax-y+b=0,斜率为a,在y轴上的截距为b,

设k1=a,m1=b.直线l2:bx-y+a=0,斜率为b,在y轴上的截距为a,

设k2=b,m2=a.

由A知:因为l1∥l2,k1=k20,m10,即a=b0,b0,矛盾.

由B知:k1k2,m10,即ab,b0,矛盾.

由C知:k10,m20,即a0,可以成立.

由D知:k10,m2m1,即a0,ab,矛盾.

3.已知点A(-1,1)和圆C:(x-5)2+(y-7)2=4,一束光线从A经x轴反射到圆C上的最短路程是()

A.62-2 B.8

C.46 D.10

解析:选B.点A关于x轴对称点A(-1,-1),A与圆心(5,7)的距离为5+12+7+12=10.所求最短路程为10-2=8.

4.圆x2+y2=1与圆x2+y2=4的位置关系是()

A.相离 B.相切

C.相交 D.内含

解析:选D.圆x2+y2=1的圆心为(0,0),半径为1,圆x2+y2=4的圆心为(0,0),半径为2,则圆心距02-1=1,所以两圆内含.

5.已知圆C:(x-a)2+(y-2)2=4(a0)及直线l:x-y+3=0,当直线l被圆C截得的弦长为23时,a的值等于()

A.2 B.2-1

C.2-2 D.2+1

解析:选B.圆心(a,2)到直线l:x-y+3=0的距离d=|a-2+3|2=|a+1|2,依题意|a+1|22+2322=4,解得a=2-1.

6.与直线2x+3y-6=0关于点(1,-1)对称的直线是()

A.3x-2y-6=0

B.2x+3y+7=0

C.3x-2y-12=0

D.2x+3y+8=0

解析:选D.∵所求直线平行于直线2x+3y-6=0,

设所求直线方程为2x+3y+c=0,

由|2-3+c|22+32=|2-3-6|22+32,

c=8,或c=-6(舍去),

所求直线方程为2x+3y+8=0.

7.若直线y-2=k(x-1)与圆x2+y2=1相切,则切线方程为()

A.y-2=34(1-x)

B.y-2=34(x-1)

C.x=1或y-2=34(1-x)

D.x=1或y-2=34(x-1)

解析:选B.数形结合答案容易错选D,但要注意直线的表达式是点斜式,说明直线的斜率存在,它与直线过点(1,2)要有所区分.

8.圆x2+y2-2x=3与直线y=ax+1的公共点有()

A.0个 B.1个

C.2个 D.随a值变化而变化

解析:选C.直线y=ax+1过定点(0,1),而该点一定在圆内部.

9.过P(5,4)作圆C:x2+y2-2x-2y-3=0的切线,切点分别为A、B,四边形PACB的面积是()

A.5 B.10

C.15 D.20

解析:选B.∵圆C的圆心为(1,1),半径为5.

|PC|=5-12+4-12=5,

|PA|=|PB|=52-52=25,

S=122552=10.

10.若直线mx+2ny-4=0(m、nR,nm)始终平分圆x2+y2-4x-2y-4=0的周长,则mn的取值范围是()

A.(0,1) B.(0,-1)

C.(-,1) D.(-,-1)

解析:选C.圆x2+y2-4x-2y-4=0可化为(x-2)2+(y-1)2=9,直线mx+2ny-4=0始终平分圆周,即直线过圆心(2,1),所以2m+2n-4=0,即m+n=2,mn=m(2-m)=-m2+2m=-(m-1)2+11,当m=1时等号成立,此时n=1,与“mn”矛盾,所以mn<1.

11.已知直线l:y=x+m与曲线y=1-x2有两个公共点,则实数m的取值范围是()

A.(-2,2) B.(-1,1)

C.[1,2) D.(-2,2)

解析:选C. 曲线y=1-x2表示单位圆的上半部分,画出直线l与曲线在同一坐标系中的图象,可观察出仅当直线l在过点(-1,0)与点(0,1)的直线与圆的上切线之间时,直线l与曲线有两个交点.

当直线l过点(-1,0)时,m=1;

当直线l为圆的上切线时,m=2(注:m=-2,直线l为下切线).

12.过点P(-2,4)作圆O:(x-2)2+(y-1)2=25的切线l,直线m:ax-3y=0与直线l平行,则直线l与m的距离为()

A.4 B.2

C.85 D.125

解析:选A.∵点P在圆上,

切线l的斜率k=-1kOP=-11-42+2=43.

直线l的方程为y-4=43(x+2),

即4x-3y+20=0.

又直线m与l平行,

直线m的方程为4x-3y=0.

故两平行直线的距离为d=|0-20|42+-32=4.

二、填空题(本大题共4小题,请把答案填在题中横线上)

13.过点A(1,-1),B(-1,1)且圆心在直线x+y-2=0上的圆的方程是________.

解析:易求得AB的中点为(0,0),斜率为-1,从而其垂直平分线为直线y=x,根据圆的几何性质,这条直线应该过圆心,将它与直线x+y-2=0联立得到圆心O(1,1),半径r=|OA|=2.

答案:(x-1)2+(y-1)2=4

14.过点P(-2,0)作直线l交圆x2+y2=1于A、B两点,则|PA||PB|=________.

解析:过P作圆的切线PC,切点为C,在Rt△POC中,易求|PC|=3,由切割线定理,|PA||PB|=|PC|2=3.

答案:3

15.若垂直于直线2x+y=0,且与圆x2+y2=5相切的切线方程为ax+2y+c=0,则ac的值为________.

解析:已知直线斜率k1=-2,直线ax+2y+c=0的斜率为-a2.∵两直线垂直,(-2)(-a2)=-1,得a=-1.圆心到切线的距离为5,即|c|5=5,c=5,故ac=5.

答案:5

16.若直线3x+4y+m=0与圆x2+y2-2x+4y+4=0没有公共点,则实数m的取值范围是__________.

解析:将圆x2+y2-2x+4y+4=0化为标准方程,

得(x-1)2+(y+2)2=1,圆心为(1,-2),半径为1.若直线与圆无公共点,即圆心到直线的距离大于半径,即d=|31+4-2+m|32+42=|m-5|5>1,

m<0或m>10.

答案:(-,0)(10,+)

三、解答题(本大题共6小题,解答时应写出必要的文字说明、证明过程或演算步骤)

17.三角形ABC的边AC,AB的高所在直线方程分别为2x-3y+1=0,x+y=0,顶点A(1,2),求BC边所在的直线方程.

解:AC边上的高线2x-3y+1=0,

所以kAC=-32.

所以AC的方程为y-2=-32(x-1),

即3x+2y-7=0,

同理可求直线AB的方程为x-y+1=0.

下面求直线BC的方程,

由3x+2y-7=0,x+y=0,得顶点C(7,-7),

由x-y+1=0,2x-3y+1=0,得顶点B(-2,-1).

所以kBC=-23,直线BC:y+1=-23(x+2),

即2x+3y+7=0.

18.一束光线l自A(-3,3)发出,射到x轴上,被x轴反射后与圆C:x2+y2-4x-4y+7=0有公共点.

(1)求反射光线通过圆心C时,光线l所在直线的方程;

(2)求在x轴上,反射点M的横坐标的取值范围.

解:圆C的方程可化为(x-2)2+(y-2)2=1.

(1)圆心C关于x轴的对称点为C(2,-2),过点A,C的直线的方程x+y=0即为光线l所在直线的方程.

(2)A关于x轴的对称点为A(-3,-3),

设过点A的直线为y+3=k(x+3).

当该直线与圆C相切时,有|2k-2+3k-3|1+k2=1,解得k=43或k=34,

所以过点A的圆C的两条切线分别为y+3=43(x+3),y+3=34(x+3).

令y=0,得x1=-34,x2=1,

所以在x轴上反射点M的横坐标的取值范围是[-34,1].

19.已知圆x2+y2-2x-4y+m=0.

(1)此方程表示圆,求m的取值范围;

(2)若(1)中的圆与直线x+2y-4=0相交于M、N两点,且OMON(O为坐标原点),求m的值;

(3)在(2)的条件下,求以MN为直径的圆的方程.

解:(1)方程x2+y2-2x-4y+m=0,可化为

(x-1)2+(y-2)2=5-m,

∵此方程表示圆,

5-m>0,即m<5.

(2)x2+y2-2x-4y+m=0,x+2y-4=0,

消去x得(4-2y)2+y2-2(4-2y)-4y+m=0,

化简得5y2-16y+m+8=0.

设M(x1,y1),N(x2,y2),则

y1+y2=165, ①y1y2=m+85. ②

由OMON得y1y2+x1x2=0

即y1y2+(4-2y1)(4-2y2)=0,

16-8(y1+y2)+5y1y2=0.

将①②两式代入上式得

16-8165+5m+85=0,

解之得m=85.

(3)由m=85,代入5y2-16y+m+8=0,

化简整理得25y2-80y+48=0,解得y1=125,y2=45.

x1=4-2y1=-45,x2=4-2y2=125.

M-45,125,N125,45,

MN的中点C的坐标为45,85.

又|MN|= 125+452+45-1252=855,

所求圆的半径为455.

所求圆的方程为x-452+y-852=165.

20. 已知圆O:x2+y2=1和定点A(2,1),由圆O外一点P(a,b)向圆O引切线PQ,切点为Q,|PQ|=|PA|成立,如图.

(1)求a、b间关系;

(2)求|PQ|的最小值;

(3)以P为圆心作圆,使它与圆O有公共点,试在其中求出半径最小的圆的方程.

解:(1)连接OQ、OP,则△OQP为直角三角形,

又|PQ|=|PA|,

所以|OP|2=|OQ|2+|PQ|2

=1+|PA|2,

所以a2+b2=1+(a-2)2+(b-1)2,

故2a+b-3=0.

(2)由(1)知,P在直线l:2x+y-3=0上,

所以|PQ|min=|PA|min,为A到直线l的距离,

所以|PQ|min=|22+1-3|22+12=255.

(或由|PQ|2=|OP|2-1=a2+b2-1=a2+9-12a+4a2-1=5a2-12a+8=5(a-1.2)2+0.8,得|PQ|min=255.)

(3)以P为圆心的圆与圆O有公共点,半径最小时为与圆O相切的情形,而这些半径的最小值为圆O到直线l的距离减去圆O的半径,圆心P为过原点与l垂直的直线l与l的交点P0,所以r=322+12-1=355-1,

又l:x-2y=0,

联立l:2x+y-3=0得P0(65,35).

所以所求圆的方程为(x-65)2+(y-35)2=(355-1)2.

21.有一圆与直线l:4x-3y+6=0相切于点A(3,6),且经过点B(5,2),求此圆的方程.

解:法一:由题意可设所求的方程为(x-3)2+(y-6)2+(4x-3y+6)=0,又因为此圆过点(5,2),将坐标(5,2)代入圆的方程求得=-1,所以所求圆的方程为x2+y2-10x-9y+39=0.

法二:设圆的方程为(x-a)2+(y-b)2=r2,

则圆心为C(a,b),由|CA|=|CB|,CAl,得

3-a2+6-b2=r2,5-a2+2-b2=r2,b-6a-343=-1,解得a=5,b=92,r2=254.所以所求圆的方程为(x-5)2+(y-92)2=254.

法三:设圆的方程为x2+y2+Dx+Ey+F=0,由CAl,A(3,6),B(5,2)在圆上,得

32+62+3D+6E+F=0,52+22+5D+2E+F=0,-E2-6-D2-343=-1,解得D=-10,E=-9,F=39.

所以所求圆的方程为x2+y2-10x-9y+39=0.

法四:设圆心为C,则CAl,又设AC与圆的另一交点为P,则CA的方程为y-6=-34(x-3),

即3x+4y-33=0.

又因为kAB=6-23-5=-2,

所以kBP=12,所以直线BP的方程为x-2y-1=0.

解方程组3x+4y-33=0,x-2y-1=0,得x=7,y=3.所以P(7,3).

所以圆心为AP的中点(5,92),半径为|AC|=52.

所以所求圆的方程为(x-5)2+(y-92)2=254.

22.如图在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=4.

(1)若直线l过点A(4,0),且被圆C1截得的弦长为23,求直线l的方程;

(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被C2截得的弦长相等.试求所有满足条件的点P的坐标.

解:(1)由于直线x=4与圆C1不相交,所以直线l的斜率存在.设直线l的方程为y=k(x-4),圆C1的圆心到直线l的距离为d,因为圆C1被直线l截得的弦长为23,所以d=22-32=1.

由点到直线的距离公式得d=|1-k-3-4|1+k2,

从而k(24k+7)=0,即k=0或k=-724,

所以直线l的方程为y=0或7x+24y-28=0.

(2)设点P(a,b)满足条件,不妨设直线l1的方程为y-b=k(x-a),k0,则直线l2的方程为y-b=-1k(x-a).因为圆C1和C2的半径相等,且圆C1被直线l1截得的弦长与圆C2被直线l2截得的弦长相等,所以圆C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等,即

|1-k-3-a-b|1+k2=|5+1k4-a-b|1+1k2,

整理得|1+3k+ak-b|=|5k+4-a-bk|,从而1+3k+ak-b=5k+4-a-bk或1+3k+ak-b=-5k-4+a+bk,即(a+b-2)k=b-a+3或(a-b+8)k=a+b-5,因为k的取值有无穷多个,所以

a+b-2=0,b-a+3=0,或a-b+8=0,a+b-5=0,

解得a=52,b=-12,或a=-32,b=132.

这样点P只可能是点P152,-12或点P2-32,132.

经检验点P1和P2满足题目条件.

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
大家都在看

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限