2016-10-26
收藏
1.下列命题中,真命题是()
A.函数y=1x是奇函数,且在定义域内为减函数
B.函数y=x3(x-1)0是奇函数,且在定义域内为增函数
C.函数y=x2是偶函数,且在(-3,0)上为减函数
D.函数y=ax2+c(ac0)是偶函数,且在(0,2)上为增函数
解析:选C.选项A中,y=1x在定义域内不具有单调性;B中,函数的定义域不关于原点对称;D中,当a<0时,y=ax2+c(ac0)在(0,2)上为减函数,故选C.
2.奇函数f(x)在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,最小值为-1,则2f(-6)+f(-3)的值为()
A.10 B.-10
C.-15 D.15
解析:选C.f(x)在[3,6]上为增函数,f(x)max=f(6)=8,f(x)min=f(3)=-1.2f(-6)+f(-3)=-2f(6)-f(3)=-28+1=-15.
3.f(x)=x3+1x的图象关于()
A.原点对称 B.y轴对称
C.y=x对称 D.y=-x对称
解析:选A.x0,f(-x)=(-x)3+1-x=-f(x),f(x)为奇函数,关于原点对称.
4.如果定义在区间[3-a,5]上的函数f(x)为奇函数,那么a=________.
解析:∵f(x)是[3-a,5]上的奇函数,
区间[3-a,5]关于原点对称,
3-a=-5,a=8.
答案:8
1.函数f(x)=x的奇偶性为()
A.奇函数 B.偶函数
C.既是奇函数又是偶函数 D.非奇非偶函数
解析:选D.定义域为{x|x0},不关于原点对称.
2.下列函数为偶函数的是()
A.f(x)=|x|+x B.f(x)=x2+1x
C.f(x)=x2+x D.f(x)=|x|x2
解析:选D.只有D符合偶函数定义.
3.设f(x)是R上的任意函数,则下列叙述正确的是()
A.f(x)f(-x)是奇函数
B.f(x)|f(-x)|是奇函数
C.f(x)-f(-x)是偶函数
D.f(x)+f(-x)是偶函数
解析:选D.设F(x)=f(x)f(-x)
则F(-x)=F(x)为偶函数.
设G(x)=f(x)|f(-x)|,
则G(-x)=f(-x)|f(x)|.
G(x)与G(-x)关系不定.
设M(x)=f(x)-f(-x),
M(-x)=f(-x)-f(x)=-M(x)为奇函数.
设N(x)=f(x)+f(-x),则N(-x)=f(-x)+f(x).
N(x)为偶函数.
4.已知函数f(x)=ax2+bx+c(a0)是偶函数,那么g(x)=ax3+bx2+cx()
A.是奇函数
B.是偶函数
C.既是奇函数又是偶函数
D.是非奇非偶函数
解析:选A.g(x)=x(ax2+bx+c)=xf(x),g(-x)=-xf(-x)=-xf(x)=-g(x),所以g(x)=ax3+bx2+cx是奇函数;因为g(x)-g(-x)=2ax3+2cx不恒等于0,所以g(-x)=g(x)不恒成立.故g(x)不是偶函数.
5.奇函数y=f(x)(xR)的图象必过点()
A.(a,f(-a)) B.(-a,f(a))
C.(-a,-f(a)) D.(a,f(1a))
解析:选C.∵f(x)是奇函数,
f(-a)=-f(a),
即自变量取-a时,函数值为-f(a),
故图象必过点(-a,-f(a)).
6.f(x)为偶函数,且当x0时,f(x)2,则当x0时()
A.f(x) B.f(x)2
C.f(x)-2 D.f(x)R
解析:选B.可画f(x)的大致图象易知当x0时,有f(x)2.故选B.
7.若函数f(x)=(x+1)(x-a)为偶函数,则a=________.
解析:f(x)=x2+(1-a)x-a为偶函数,
1-a=0,a=1.
答案:1
8.下列四个结论:①偶函数的图象一定与纵轴相交;②奇函数的图象一定通过原点;③f(x)=0(xR)既是奇函数,又是偶函数;④偶函数的图象关于y轴对称.其中正确的命题是________.
解析:偶函数的图象关于y轴对称,不一定与y轴相交,①错,④对;奇函数当x=0无意义时,其图象不过原点,②错,③对.
答案:③④
9.①f(x)=x2(x2+2);②f(x)=x|x|;
③f(x)=3x+x;④f(x)=1-x2x.
以上函数中的奇函数是________.
解析:(1)∵xR,-xR,
又∵f(-x)=(-x)2[(-x)2+2]=x2(x2+2)=f(x),
f(x)为偶函数.
(2)∵xR,-xR,
又∵f(-x)=-x|-x|=-x|x|=-f(x),
f(x)为奇函数.
(3)∵定义域为[0,+),不关于原点对称,
f(x)为非奇非偶函数.
(4)f(x)的定义域为[-1,0)(0,1]
即有-11且x0,则-11且-x0,
又∵f(-x)=1--x2-x=-1-x2x=-f(x).
f(x)为奇函数.
答案:②④
10.判断下列函数的奇偶性:
(1)f(x)=(x-1) 1+x1-x;(2)f(x)=x2+xx<0-x2+x x>0.
解:(1)由1+x1-x0,得定义域为[-1,1),关于原点不对称,f(x)为非奇非偶函数.
(2)当x<0时,-x>0,则f(-x)=-(-x)2-x=-(-x2+x)=-f(x),
当x>0时,-x<0,则f(-x)=(-x)2-x=-(-x2+x)=-f(x),
综上所述,对任意的x(-,0)(0,+),都有f(-x)=-f(x),
f(x)为奇函数.
11.判断函数f(x)=1-x2|x+2|-2的奇偶性.
解:由1-x20得-11.
由|x+2|-20得x0且x-4.
定义域为[-1,0)(0,1],关于原点对称.
∵x[-1,0)(0,1]时,x+2>0,
f(x)=1-x2|x+2|-2=1-x2x,
f(-x)=1--x2-x=-1-x2x=-f(x),
f(x)=1-x2|x+2|-2是奇函数.
12.若函数f(x)的定义域是R,且对任意x,yR,都有f(x+y)=f(x)+f(y)成立.试判断f(x)的奇偶性.
解:在f(x+y)=f(x)+f(y)中,令x=y=0,
得f(0+0)=f(0)+f(0),
f(0)=0.
再令y=-x,则f(x-x)=f(x)+f(-x),
即f(x)+f(-x)=0,
f(-x)=-f(x),故f(x)为奇函数.
高二数学函数的极值课件
高二数学等可能性事件的概率
高二数学上册期中考试分析
高二数学椭圆的几何性质简单性质1
高二数学函数单调性1
高二数学函数单调性2
高二数学学等差数列课件
高二数学独立重复试验2
高二数学独立重复试验3
高二数学相互对立事件同时发生的概率
高二数学分类计数原理和分步计数原理1
高二数学几何斜二测画法
高二数学奇偶性
高二数学独立重复试验1
高二数学解三角形和不等式
高二数学切线课件
高二数学圆锥曲线复习课
高二数学分类计数原理和分步计数原理3
高二数学分类计数原理与分步计数原理4
高二数学直线的一般式方程
高二数学棱锥的概念及其性质
高二数学充分和必要条件
高二数学上册第一章复习
高二数学圆的一般曲线方程
高二数学数列的极限
高二数学曲线方程椭圆习题
高二数学函数单调性3
高二数学距离3
高二数学球课件
高二数学立方根
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |