高中数学函数的单调性测试题(含答案)_试卷分析 - 查字典数学网
数学高中数学函数的单调性测...
首页>教学经验>试卷分析>高中数学函...

高中数学函数的单调性测试题(含答案)

2016-10-26 收藏

一、 选择题(每小题5分,计512=60分)

题号 1 2 3 4 5 6 7 8 9 10 11 12

答案

1. 在区间 上为增函数的是: ( )

A. B. C.   D.

2. 已知函数 ,则 与 的大小关系是:( )

A. B. = C. D.不能确定

3. 下列命题:(1)若 是增函数,则 是减函数;(2)若 是减函数,则 是减函数;(3)若 是增函数, 是减函数, 有意义,则 为减函数,其中正确的个数有:( )

A.1B.2   C.3 D.0

4.函数f(x)在区间(-2,3)上是增函数,则y=f(x+5)的递增区间是 ( )

A.(3,8) B.(-7,-2) C.(-2,3) D.(0,5)

5.函数f(x)= 在区间(-2,+)上单调递增,则实数a的取值范围是 ( )

A.(0, ) B.( ,+) C.(-2,+) D.(-,-1)(1,+)

6.已知定义域为R的函数f(x)在区间(-,5)上单调递 减,对任意实数t,都有f(5+t)=f(5-t),那么下列式子一定成立的是 ( )

A.f(-1)<f(9)<f(13) B.f(13)<f(9)<f(-1)

C.f(9)<f(-1)<f(13) D .f(13)<f(-1)<f(9)

7.已知函数 在区间 上是减函数,则实数 的取 值范围是( )

A.a B.a-3 C.a D.a3

8.已知f(x)在区间(-,+)上是增函数,a、bR且a+b0,则下列不等式中正确的是( )

A.f(a)+f(b)-f(a)+f(b)] B.f(a)+f(b)f(-a)+f(-b)

C.f(a)+f(b)-f(a)+f(b)] D.f (a)+f(b)f(-a)+f(-b)

9.定义在R上的函数y=f(x)在(-,2)上是增函数,且y=f(x+2)图象的对称轴是x=0,则( )

A.f(-1)<f(3) B.f (0)>f(3) C.f (-1)=f (-3) D.f(2)<f(3)

10. 已知函数 在 上是单调函数,则 的取值范围是( )

A. B. C. D.

二、 填空题(每小题4分,计44=16分)

11. 设函数 ,对任意实数 都有 成立,则函数值 中,最小的一个不可能是_________

12. 函数 是R上的单调函数且对任意实数有 . 则不等式 的解集为__________

13.已知函数 , 当 时,

14. 设 设为奇函数, 且在 内是减函数, ,则不等式 的解集为   .

15. 定义在(-,+)上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上是增函数,下面是关于f(x)的判断:

①f(x)是周期函数;

②f(x)的图象关于直线x=1对称;

③f(x)在[0,1]上是增函数;

④f(x)在[1,2]上是减函数;⑤f(2)=f(0).

其中正确的判断是 (把你认为正确的判断都填上)

三、 解答题(共计74分)

16. f(x)是定义在( 0,+)上的增函数,且f( ) = f(x)-f(y)

(1)求f(1)的值.

(2)若f(6)= 1,解不等式 f( x+3 )-f( ) <2 .

17. 奇函数f(x)在定义域(-1,1)内是减函数,又f(1-a)+f(1-a2)0,求a的取值范围。

18.根据函数单调性的定义,判断 在 上的单调性并给出证明。

19. 设f(x)是定义在R+上的递增函数,且f(xy)=f(x) +f(y)

(1)求证 (2)若f(3)=1,且f(a)>f(a-1)+2,求a的取值范围.

20. 二次函数

(1)求f(x)的解析式;

(2)在区间[-1,1]上,y= f(x)的图像恒在y=2x+m的图像上方,试确定实数m的取值范围。

21. 定义在R上的函数y=f(x),对于任意实数m.n,恒有 ,且当x0时,01。

(1)求f(0)的值;

(2)求当x0时,f(x)的取值范围;

(3)判断f(x)在R上的单调性,并证明你的结论。

函数的单调性测试题答案

一、 选择题(每小题5分,计512=60分)

题号 1 2 3 4 5 6 7 8 9 10 11 12

答 案

二. 填空题(每小题4分,计44=16分)

11. 12. (-1, ) 13. 1,0 14. 15. ①②⑤

三. 解答题(共计74分)

16. 解: ①在等式中 ,则f(1)=0.

②在等式中令x=36,y=6则

故原不等式为: 即f[x(x+3)]<f(36),

又f(x)在(0,+)上为增函数,

故不等式等价于:

17. 解: 在 上任取x1,x2,且 ,

∵ ,

x1- x20,且 .

(1)当a0时, ,即 ,

是 上的减函数;

(2 )当a0时, ,即 ,

是 上的增函数;

18. 解:因为f(x ) 是奇函数 ,所以f(1-a2)=-f (a2-1),由题设f(1-a)f(a2-1)。

又f(x)在定义域(-1,1)上递减,所以-1a2-11,解得01。

19. 解:(1)因为 ,所以

(2)因为f(3)=1,f(9)=f(3)+f(3)=2,于是

由题设有 解得

20. 解: (Ⅰ)令

二次函数图像的对称轴为 。

可令二次函数的解析式为

二次函数的解析式为

(Ⅱ)∵

21.

21. 解: (1)令m=0,n0,则有

又由已知, n0时,01 f (0)=1

(2)设x0,则-x0

则 又∵-x0 0 f(-x)

(3)f(x)在R上的单调递减

证明:设

又 ,由已知

…… 16分

由(1)、(2),

f(x)在R上的单调递减

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限