高中数学指数函数性质的应用同步训练(有解析新人教A版必修1)_试卷分析 - 查字典数学网
数学高中数学指数函数性质的...
首页>教学经验>试卷分析>高中数学指...

高中数学指数函数性质的应用同步训练(有解析新人教A版必修1)

2016-10-26 收藏

指数函数性质的应用同步训练(有解析新人教A版必修1)

一、选择题

1.函数y=2x+1的图象是()

[答案] A

2.(2013~2014重庆市南开中学期中试题)已知f(x)=a-x(a0,且a1),且f(-2)f(-3),则a的取值范围是()

A.a B.a1

C.a D.01

[答案] D

3.函数f(x)=ax+(1a)x(a0且a1)是()

A.奇函数 B.偶函数

C.奇函数也是偶函数 D.既非奇函数也非偶函数

[答案] B

4.函数y=(12)x2-3x+2在下列哪个区间上是增函数()

A.(-,32] B.[32,+)

C.[1,2] D.(-,-1][2,+)

[答案] A

5.已知a=0.80.7,b=0.80.9,c=1.20.8,则a,b,c的大小关系是()

A.a>b>c B.b>a>c

C.c>b>a D.c>a>b

[答案] D

[解析] 因为函数y=0.8x是R上的单调减函数,

所以a>b.

又因为a=0.80.7<0.80=1,c=1.20.8>1.20=1,

所以c>a.故c>a>b.

6.若函数f(x)=ax-1+1,x<-1,a-x,x-1(a>0,且a1)是R上的单调函数,则实数a的取值范围是()

A.(0,13) B.(13,1)

C.(0,13] D.[13,1)

[答案] D

[解析] 当a>1时,f(x)在(-,-1)上是增函数,在[-1,+)上是减函数,则函数f(x)在R上不是单调函数,故a>1不合题意;当0<a<1时,f(x)在(-,-1)上是增函数,在[-1,+)上是增函数,又函数f(x)在R上是单调函数,则a(-1-1)+1a-(-1),解得a13,所以实数a的取值范围是13a<1.

二、填空题

7.函数y=19x-1的定义域是________.

[答案] (-,0]

[解析] 由题意得(19)x-10,即(19)x1,x0.

8.函数y=(23)|1-x|的单调递减区间是________.

[答案] [1,+)

[解析] y=(23)|1-x|=23x-1x1231-xx1

因此它的减区间为[1,+).

9.对于函数f(x)的定义域中的任意的x1、x2(x1x2),有如下的结论:

①f(x1+x2)=f(x1)f(x2); ②f(x1x2)=f(x1)+f(x2);

③fx1-fx2x1-x2>0; ④fx1-fx2x1-x2<0

当f(x)=10x时,上述结论中正确的是________.

[答案] ①③

[解析] 因为f(x)=10x,且x1x2,所以f(x1+x2)=10x1+x2=10x110x2=f(x1)f(x2),所以①正确;因为f(x1x2)=10x110x1+10x2=f(x1)+f(x2),②不正确;因为f(x)=10x是增函数,所以f(x1)-f(x2)与x1-x2同号,所以及fx1-fx2x1-x2>0,所以③正确.④不正确.

三、解答题

10.比较下列各题中两个值的大小:

(1)1.8-0.1,1.8-0.2;

(2)1.90.3,0.73.1;

(3)a1.3,a2.5(a>0,且a1).

[解析] (1)由于1.8>1,指数函数y=1.8x在R上为增函数.

1.8-0.1>1.8-0.2.

(2)∵1.90.3>1,0.73.1<1,1.90.3>0.73.1.

(3)当a>1时,函数y=ax是增函数,此时a1.3<a2.5;

当0<a<1时,函数y=ax是减函数,

此时a1.3>a2.5,即当0<a<1时,a1.3>a2.5;

当a>1时,a1.3<a2.5.

11.(2013~2014昆明高一检测)若ax+1>(1a)5-3x(a>0,且a1),求x的取值范围.

[解析] ax+1>(1a)5-3xax+1>a3x-5,

当a>1时,可得x+1>3x-5,

x<3.

当0<a<1时,可得x+1<3x-5,

x>3.

综上,当a>1时,x<3,当0<a<1时,x>3.

12.设f(x)=-2x+12x+1+b(b为常数).

(1)当b=1时,证明:f(x)既不是奇函数也不是偶函数;

(2)若f(x)是奇函数,求b的值.

[解析] (1)举出反例即可.

f(x)=-2x+12x+1+1,

f(1)=-2+122+1=-15,

f(-1)=-12+12=14,

∵f(-1)-f(1),

f(x)不是奇函数.

又∵f(-1)f(1),

f(x)不是偶函数.

f(x)既不是奇函数也不是偶函数.

(2)∵f(x)是奇函数,

f(-x)=-f(x)对定义域内的任意实数x恒成立,

即-2-x+12-x+1+b=--2x+12x+1+b对定义域内的任意实数x恒成立.

即:(2-b)22x+(2b-4)2x+(2-b)=0对定义域内的任意实数x恒成立.b=2,

经检验其定义域关于原点对称,故符合题意.

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限