2016-10-26
收藏
选修2-2 1.1 第1课时 变化率问题
一、选择题
1.在平均变化率的定义中,自变量x在x0处的增量x()
A.大于零 B.小于零
C.等于零 D.不等于零
[答案] D
[解析] x可正,可负,但不为0,故应选D.
2.设函数y=f(x),当自变量x由x0变化到x0+x时,函数的改变量y为()
A.f(x0+x) B.f(x0)+x
C.f(x0)x D.f(x0+x)-f(x0)
[答案] D
[解析] 由定义,函数值的改变量y=f(x0+x)-f(x0),故应选D.
3.已知函数f(x)=-x2+x,则f(x)从-1到-0.9的平均变化率为()
A.3 B.0.29
C.2.09 D.2.9
[答案] D
[解析] f(-1)=-(-1)2+(-1)=-2.
f(-0.9)=-(-0.9)2+(-0.9)=-1.71.
平均变化率为f(-0.9)-f(-1)-0.9-(-1)=-1.71-(-2)0.1=2.9,故应选D.
4.已知函数f(x)=x2+4上两点A,B,xA=1,xB=1.3,则直线AB的斜率为()
A.2 B.2.3
C.2.09 D.2.1
[答案] B
[解析] f(1)=5,f(1.3)=5.69.
kAB=f(1.3)-f(1)1.3-1=5.69-50.3=2.3,故应选B.
5.已知函数f(x)=-x2+2x,函数f(x)从2到2+x的平均变化率为()
A.2-x B.-2-x
C.2+x D.(x)2-2x
[答案] B
[解析] ∵f(2)=-22+22=0,
f(2+x)=-(2+x)2+2(2+x)
=-2x-(x)2,
f(2+x)-f(2)2+x-2=-2-x,故应选B.
6.已知函数y=x2+1的图象上一点(1,2)及邻近一点(1+x,2+y),则yx等于()
A.2 B.2x
C.2+x D.2+(x)2
[答案] C
[解析] yx=f(1+x)-f(1)x
=[(1+x)2+1]-2x=2+x.故应选C.
7.质点运动规律S(t)=t2+3,则从3到3.3内,质点运动的平均速度为()
A.6.3 B.36.3
C.3.3 D.9.3
[答案] A
[解析] S(3)=12,S(3.3)=13.89,
平均速度v=S(3.3)-S(3)3.3-3=1.890.3=6.3,故应选A.
8.在x=1附近,取x=0.3,在四个函数①y=x、②y=x2、③y=x3、④y=1x中,平均变化率最大的是()
A.④ B.③
C.② D.①
[答案] B
[解析] x=0.3时,①y=x在x=1附近的平均变化率k1=1;②y=x2在x=1附近的平均变化率k2=2+x=2.3;③y=x3在x=1附近的平均变化率k3=3+3x+(x)2=3.99;④y=1x在x=1附近的平均变化率k4=-11+x=-1013.k3>k2>k1>k4,故应选B.
9.物体做直线运动所经过的路程s可以表示为时间t的函数s=s(t),则物体在时间间隔[t0,t0+t]内的平均速度是()
A.v0 B.ts(t0+t)-s(t0)
C.s(t0+t)-s(t0)t D.s(t)t
[答案] C
[解析] 由平均变化率的概念知C正确,故应选C.
10.已知曲线y=14x2和这条曲线上的一点P1,14,Q是曲线上点P附近的一点,则点Q的坐标为()
A.1+x,14(x)2 B.x,14(x)2
C.1+x,14(x+1)2 D.x,14(1+x)2
[答案] C
[解析] 点Q的横坐标应为1+x,所以其纵坐标为f(1+x)=14(x+1)2,故应选C.
二、填空题
11.已知函数y=x3-2,当x=2时,yx=________.
[答案] (x)2+6x+12
[解析] yx=(2+x)3-2-(23-2)x
=(x)3+6(x)2+12xx
=(x)2+6x+12.
12.在x=2附近,x=14时,函数y=1x的平均变化率为________.
[答案] -29
[解析] yx=12+x-12x=-14+2x=-29.
13.函数y=x在x=1附近,当x=12时的平均变化率为________.
[答案] 6-2
[解析] yx=1+x-1x=11+x+1=6-2.
14.已知曲线y=x2-1上两点A(2,3),B(2+x,3+y),当x=1时,割线AB的斜率是________;当x=0.1时,割线AB的斜率是________.
[答案] 5 4.1
[解析] 当x=1时,割线AB的斜率
k1=yx=(2+x)2-1-22+1x=(2+1)2-221=5.
当x=0.1时,割线AB的斜率
k2=yx=(2+0.1)2-1-22+10.1=4.1.
三、解答题
15.已知函数f(x)=2x+1,g(x)=-2x,分别计算在区间[-3,-1],[0,5]上函数f(x)及g(x)的平均变化率.
[解析] 函数f(x)在[-3,-1]上的平均变化率为
f(-1)-f(-3)-1-(-3)=[2(-1)+1]-[2(-3)+1]2=2.
函数f(x)在[0,5]上的平均变化率为
f(5)-f(0)5-0=2.
函数g(x)在[-3,-1]上的平均变化率为
g(-1)-g(-3)-1-(-3)=-2.
函数g(x)在[0,5]上的平均变化率为
g(5)-g(0)5-0=-2.
16.过曲线f(x)=2x2的图象上两点A(1,2),B(1+x,2+y)作曲线的割线AB,求出当x=14时割线的斜率.
[解析] 割线AB的斜率k=(2+y)-2(1+x)-1=yx
=2(1+x)2-2x=-2(x+2)(1+x)2=-7225.
17.求函数y=x2在x=1、2、3附近的平均变化率,判断哪一点附近平均变化率最大?
[解析] 在x=2附近的平均变化率为
k1=f(1+x)-f(1)x=(1+x)2-1x=2+x;
在x=2附近的平均变化率为
k2=f(2+x)-f(2)x=(2+x)2-22x=4+x;
在x=3附近的平均变化率为
k3=f(3+x)-f(3)x=(3+x)2-32x=6+x.
对任意x有,k1<k2<k3,
在x=3附近的平均变化率最大.
18.(2010杭州高二检测)路灯距地面8m,一个身高为1.6m的人以84m/min的速度在地面上从路灯在地面上的射影点C处沿直线离开路灯.
(1)求身影的长度y与人距路灯的距离x之间的关系式;
(2)求人离开路灯的第一个10s内身影的平均变化率.
[解析] (1)如图所示,设人从C点运动到B处的路程为xm,AB为身影长度,AB的长度为ym,由于CD∥BE,
则ABAC=BECD,
即yy+x=1.68,所以y=f(x)=14x.
(2)84m/min=1.4m/s,在[0,10]内自变量的增量为
x2-x1=1.410-1.40=14,
f(x2)-f(x1)=1414-140=72.
所以f(x2)-f(x1)x2-x1=7214=14.
即人离开路灯的第一个10s内身影的平均变化率为14.
2013年浙江省统计与概率中考数学试题解析
2103年初三数学中考模拟试题(含答案)
13届九年级数学上册入学考试试题(带答案)
九年级数学上册期末复习试题(附答案)
2013年中考数学统计与概率试题分类解析
数量和位置变化中考数学试题分类解析
2013年浙江省中考数学圆试题解析
2013年图形的变换中考数学题分类解析
中考数学第二次模拟试题(带答案)
湖北省三角形中考数学试题分类解析
生活中的立体图形同步检测题(附答案)
九年级数学中考复习测试试题
2013年九年级数学上册九月份月考试题
中考数学方程(组)和不等式(组)试题解析
2013浙江省中考数学平面几何基础专题解析
2013年中考数学方程(组)和不等式(组)试题解析
中考复习检测数学试题(有答案)
九年级数学上册期中考试试题
初中升学考试数学试题(附答案)
初三数学开学测试卷
九年级数学下册第一次月考试题(含答案)
九年级数学上册培优训练试题
2013年数量和位置变化中考数学题分类解析
2013届初中升学考试复习数学试题(带答案)
2013年浙江省中考数学函数的图象与性质试题分类解析
2013年湖北统计与概率中考数学试题专题解析
九年级数学模拟试题(含答案)
2013年湖北三角形中考数学题分类解析
九年级数学上册二次根式乘除周周练试题
九年级数学上册第三次月考试题
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |