2016-10-26 收藏
19.2.3 正方形
一、教学目的
1.掌握正方形的概念、性质和判定,并会用它们进行有关的论证和计算.
2.理解正方形与平行四边形、矩形、菱形的联系和区别,通过正方形与平行四边形、矩形、菱形的联系的教学对学生进行辩证唯物主义教育,提高学生的逻辑思维能力.
二、重点、难点
1.教学重点:正方形的定义及正方形与平行四边形、矩形、菱形的联系.
2.教学难点:正方形与矩形、菱形的关系及正方形性质与判定的灵活运用.
三、例题的意图分析
本节课安排了三个例题,例1是教材P111的例4,例2与例3都是补充的题目.其中例1与例2是正方形性质的应用,在讲解时,应注意引导学生能正确的运用其性质.例3是正方形判定的应用,它是先判定一个四边形是矩形,再证明一组邻边,从而可以判定这个四边形是正方形.随后可以再做一组判断题,进行练习巩固(参看随堂练习1),为了活跃学生的思维,也可以将判断题改为下列问题让学生思考:
①对角线相等的菱形是正方形吗?为什么?
②对角线互相垂直的矩形是正方形吗?为什么?
③对角线垂直且相等的四边形是正方形吗?为什么?如果不是,应该加上什么条件?
④能说“四条边都相等的四边形是正方形”吗?为什么?
⑤说“四个角相等的四边形是正方形”对吗?
四、课堂引入
1.做一做:用一张长方形的纸片(如图所示)折出一个正方形.
学生在动手做中对正方形产生感性认识,并感知正方形与矩形的关系.问题:什么样的四边形是正方形?
正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.
指出:正方形是在平行四边形这个大前提下定义的,其定义包括了两层意:
(1)有一组邻边相等的平行四边形 (菱形)
(2)有一个角是直角的平行四边形 (矩形)
2.【问题】正方形有什么性质?
由正方形的定义可以得知,正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形.
所以,正方形具有矩形的性质,同时又具有菱形的性质.
五、例习题分析
例1(教材P111的例4) 求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形.
已知:四边形ABCD是正方形,对角线AC、BD相交于点O(如图).
求证:△ABO、△BCO、△CDO、△DAO是全等的等腰直角三角形.
证明:∵ 四边形ABCD是正方形,
AC=BD, ACBD,
AO=CO=BO=DO(正方形的两条对角线相等,并且互相垂直平分).
△ABO、△BCO、△CDO、△DAO都是等腰直角三角形,
并且 △ABO ≌△BCO≌△CDO≌△DAO.
例2 (补充)已知:如图,正方形ABCD中,对角线的交点为O,E是OB上的一点,DGAE于G,DG交OA于F.
求证:OE=OF.
分析:要证明OE=OF,只需证明△AEO≌△DFO,由于正方形的对角线垂直平分且相等,可以得到AOE=DOF=90,AO=DO,再由同角或等角的余角相等可以得到EAO=FDO,根据ASA可以得到这两个三角形全等,故结论可得.
证明:∵ 四边形ABCD是正方形,
AOE=DOF=90,AO=DO(正方形的对角线垂直平分且相等).
又 DGAE, EAO+AEO=EDG+AEO=90.
EAO=FDO.
△AEO ≌△DFO.
OE=OF.
例3 (补充)已知:如图,四边形ABCD是正方形,分别过点A、C两点作l1∥l2,作BMl1于M,DNl1于N,直线MB、DN分别交l2于Q、P点.
求证:四边形PQMN是正方形.
分析:由已知可以证出四边形PQMN是矩形,再证△ABM≌△DAN,证出AM=DN,用同样的方法证AN=DP.即可证出MN=NP.从而得出结论.
证明:∵ PNl1,QMl1,
PN∥QM,PNM=90.
∵ PQ∥NM,
四边形PQMN是矩形.
∵ 四边形ABCD是正方形
BAD=ADC=90,AB=AD=DC(正方形的四条边都相等,四个角都是直角).
2=90.
又 2=90, 3.
△ABM≌△DAN.
AM=DN. 同理 AN=DP.
AM+AN=DN+DP
即 MN=PN.
四边形PQMN是正方形(有一组邻边相等的矩形是正方形).
六、随堂练习
1.正方形的四条边____ __,四个角___ ____,两条对角线____ ____.
2.下列说法是否正确,并说明理由.
①对角线相等的菱形是正方形;( )
②对角线互相垂直的矩形是正方形;( )
③对角线垂直且相等的四边形是正方形;( )
④四条边都相等的四边形是正方形;( )
⑤四个角相等的四边形是正方形.( )
1. 已知:如图,四边形ABCD为正方形,E、F分别
为CD、CB延长线上的点,且DE=BF.
求证:AFE=AEF.
4.如图,E为正方形ABCD内一点,且△EBC是等边三角形,
求EAD与ECD的度数.
七、课后练习
1.已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF.
求证:EAAF.
2.已知:如图,△ABC中,C=90,CD平分ACB,DEBC于E,DFAC于F.求证:四边形CFDE是正方形.
3.已知:如图,正方形ABCD中,E为BC上一点,AF平分DAE交CD于F,求证:AE=BE+DF.
北师版初一数学有理数的乘法1
北师版初一数学科学记数法3
北师版初一数学月球上有水吗1
北师版初一数学比较线段的长短4
北师版初一数学有理数的乘方2
北师版初一数学有理数的加法2
北师版初一数学日历中的方程2
北师版初一数学数轴
北师版初一数学有理数及其运算2
北师版初一数学数怎么不够用了1
北师版初一数学科学记数法1
北师版初一数学有理数的减法3
北师版初一数学线段射线直线1
北师版初一数学有理数的乘法运算律1
北师版初一数学科学记数法4
北师版初一数学比较线段的长短2
北师版初一数学用字母表示数2
北师版初一数学有理数的加法3
北师版初一数学有理数的加减混合运算
北师版初一数学数怎么又不够用了2
北师版初一数学生活中的立体图形5
北师版初一数学日历中的方程7
北师版初一数学比较线段的长短1
北师版初一数学有趣的七巧板2
北师版初一数学用字母表示数1
北师版初一数学有理数的混合运算2
北师版初一数学有理数的混合运算3
北师版初一数学月球上有水吗2
北师版初一数学日历中的方程1
北师版初一数学有理数的加法1
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |