初中数学《为什么它们平行》教案_答题技巧 - 查字典数学网
数学初中数学《为什么它们平...
首页>学习园地>答题技巧>初中数学《...

初中数学《为什么它们平行》教案

2016-10-26 收藏

6.3 为什么它们平行

●教学目标

(一)教学知识点

1.平行线的判定公理.

2.平行线的判定定理.

(二)能力训练要求

1.通过经历探索平行线的判定方法的过程,发展学生的逻辑推理能力.

2.理解和掌握平行线的判定公理及两个判定定理.

3.掌握应 用数学语言表示平行线的判定公理及定理,逐步掌握规范的推理论证格式.

( 三)情感与价值观要求

通过学生画图、讨论、 推理等活动,给学生渗透化归思想和分类思想.

●教 学重点

平行线的判定定理、公理.

●教学难点

推理过程的规范化表达.

●教学方法

尝试指导、引导发现与讨论相结合.

●教具准备

投影片五张

第一张:定理(记作投影片6.3 A)

第二张:议一议( 记作投影片6.3 B)

第三张:定理(记作投影片6.3 C)

第四张:想一想(记作投影片6. 3 D)

第五张:小结(记作 投影片6.3 E)

●教学过程

Ⅰ. 巧设现实情境,引入新课

前面我们探索过直线平行的条件.大家来想一想:两 条直线在什么情况下互相平 行呢?

上节 课我们谈到了要证实一个命题是 真命题.除公理、定义外,其他真命题都需要通 过推理的方法证实.

我们知道:“在同一平面内,不相交的两条直线叫做平行线”是定义.“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”是公理.那其他的三个真命题如何证实呢?这节课我们就来探讨第三节:为什么它们平行.

Ⅱ.讲授新课

看命题(出示投影片6.3 A)

两条直线被第三条直线所截 ,如果同旁内角互补,那么这两条直线平行.

这是一个文字证明题,需要先把命题的文字语言转化成几何图形和符号语言.所以根据题意,可以把这个文字证明题转化为下列形式:

图6 -12

如图6-12,已知,1和2是直线a、b被直线c截出的同旁内角,且1与2互补 ,求证:a∥b.

那如何证明这个题呢?我们来分析分析.

[师生共析]要证明直线a与b平行,可以想到应用平行线的判定公理来证明.这时从图中可以知道:1与3是同位角,所以只需证明3,则a与b即平行.

因为从图中可知2与3组成一个平角,即3=180,所以:3=180-2 .又因为已知条件中有2与1互补,即:1=180,所以1=180-2,因此由等量代换可以知道:3.

好.下面我们来 书写推理过程,大家口述,老师来书写.(在 书写的同时说明:符号“∵”读作“因 为”,“”读作“所以”)

证明:∵1与2互补(已知)

2=180(互补的定义)

[∵2=180]

1=180-2(等式的性质 )

∵2=180(1平角=180)

3=180-2(等式的性质)

[∵1 =180-2, 3=180-2]

3(等量代换)

[∵3]

a∥b(同位角相等,两直线平 行)

这样我们经过推理的过程证明了一个命题是真命题,我们把这个真命题称为 :直线平行的判定定理.

这一定理可简单地写成:

同旁内角互补,两直线平行.

注意:(1)已给的公理,定义和已经证明的定理以后都可以作为依据.用来证明新定理.

(2)方括号内的“∵2=180”等,就是上面 刚刚得到的“2=180”,在这种情况下,方括号内的这一步可以省略.

(3)证明中的每一步推理都要有根据,不能“想当然”.这些根据,可以是已知条件,也可以是定义、公理,已经学过的定理.在初学证明时,要求把根据写在每一步推理后面的括号内.

好,下面大家来议一议(出示投影片6.3 B)

小明用下面的方法作出了平行线,你认为他的作法对吗?为什么?

图6-13

这样我们就又得到了直线平行的另一个判定定理:(出示投影片6.3 C)

两条直线被第三条 直线所截,如果内错角相等,那么这两条直线平行.

这一定理可以简单说成:

内错角相等,两直线平 行.

刚才我们是应 用判定定理“同旁内角互补,两直线平行”来证明这一定理的.下面大家来想一想(出示投影片6.3 D)

借助“同位角相等,两直线平行”这一公理,你还能证明哪些熟悉的结论呢?

同学们讨论得真棒.下面我们通过练习来熟悉掌握直线平行的判定定理.

Ⅲ.课堂练习

(一)课本P190随堂练习

(二)看课本P188~ 190,然后小结.

Ⅳ.课时小结

这节课我们主要探讨了平行线的判定定理的证明.

由角的大小关系来证两直线平行的方法,再一次体现了“数”与“形”的关系;而应用这些公理、 定理时,必须能在图形中准确地识别出有 关的角.

注意:1.证明语言的规范化.

2.推理过程要有依据.

3.“两条直线都和第三条直线平行,这两 条直线互相平 行”这个真命题以后证.

Ⅴ.课后作业

(一)课本P191习题6.4 1、2

●板书设计

6.3 为什么它们平行

一、平行线的判定方法

1.公理:同位角相等,两直线平行.

2.定理:同旁内角互补,两直线平行.

已知:如图6-19,1和2是直线a、b被直线c截出的同旁内角,且1与2互补,求证:a∥b.

证明: 略

3.定理:内错角相等,两直线平行 .

已知,如图6-20,1和2是直线a、b被直线c截出的内错角 .且1 =2.

求证a∥b.

二、课堂练习

三、课时小结

四、课后作业

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
大家都在看

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限