2016-10-26
收藏
1.2-3=18化为对数式为()
A.log182=-3 B.log18(-3)=2
C.log218=-3 D.log2(-3)=18
解析:选C.根据对数的定义可知选C.
2.在b=log(a-2)(5-a)中,实数a的取值范围是()
A.a>5或a B.2<a<3或3<a<5
C.25 D.3<a<4
解析:选B.5-a>0a-2>0且a-21,2<a<3或3<a<5.
3.有以下四个结论:①lg(lg10)=0;②ln(lne)=0;③若10=lgx,则x=10;④若e=lnx,则x=e2,其中正确的是()
A.①③ B.②④
C.①② D.③④
解析:选C.lg(lg10)=lg1=0;ln(lne)=ln1=0,故①、②正确;若10=lgx,则x=1010,故③错误;若e=lnx,则x=ee,故④错误.
4.方程log3(2x-1)=1的解为x=________.
解析:2x-1=3,x=2.
答案:2
1.logab=1成立的条件是()
A.a=b B.a=b,且b0
C.a0,且a D.a0,a=b1
解析:选D.a0且a1,b0,a1=b.
2.若loga7b=c,则a、b、c之间满足()
A.b7=ac B.b=a7c
C.b=7ac D.b=c7a
解析:选B.loga7b=cac=7b,b=a7c.
3.如果f(ex)=x,则f(e)=()
A.1 B.ee
C.2e D.0
解析:选A.令ex=t(t0),则x=lnt,f(t)=lnt.
f(e)=lne=1.
4.方程2log3x=14的解是()
A.x=19 B.x=x3
C.x=3 D.x=9
解析:选A.2log3x=2-2,log3x=-2,x=3-2=19.
5.若log2(log3x)=log3(log4y)=log4(log2z)=0,则x+y+z的值为()
A.9 B.8
C.7 D.6
解析:选A.∵log2(log3x)=0,log3x=1,x=3.
同理y=4,z=2.x+y+z=9.
6.已知logax=2,logbx=1,logcx=4(a,b,c,x>0且1),则logx(abc)=()
A.47 B.27
C.72 D.74
解析:选D.x=a2=b=c4,所以(abc)4=x7,
所以abc=x74.即logx(abc)=74.
7.若a0,a2=49,则log23a=________.
解析:由a0,a2=(23)2,可知a=23,
log23a=log2323=1.
答案:1
8.若lg(lnx)=0,则x=________.
解析:lnx=1,x=e.
答案:e
9.方程9x-63x-7=0的解是________.
解析:设3x=t(t0),
则原方程可化为t2-6t-7=0,
解得t=7或t=-1(舍去),t=7,即3x=7.
x=log37.
答案:x=log37
10.将下列指数式与对数式互化:
(1)log216=4; (2)log1327=-3;
(3)log3x=6(x>0); (4)43=64;
(5)3-2=19; (6)(14)-2=16.
解:(1)24=16.(2)(13)-3=27.
(3)(3)6=x.(4)log464=3.
(5)log319=-2.(6)log1416=-2.
11.计算:23+log23+35-log39.
解:原式=232log23+353log39=233+359=24+27=51.
12.已知logab=logba(a0,且a1;b0,且b1).
求证:a=b或a=1b.
证明:设logab=logba=k,
则b=ak,a=bk,b=(bk)k=bk2.
∵b0,且b1,k2=1,
即k=1.当k=-1时,a=1b;
当k=1时,a=b.a=b或a=1b,命题得证.
圆锥的认识
2013年小学五年级数学下册暑假作业题及答案(彩色版)
数学六年级下学期 第四单元测试题
圆柱的体积
用不同知识解应用题
分数乘、除法应用题对比
百分数的应用——利息
分数乘、除法应用题的对比
分数除法应用题
数学六年级下学期 第四单元测试题(三)
列方程解稍复杂的分数应用题(二)
分数乘除法对比练习
工程问题
四则运算的意义和法则
简单的统计
分数除法的意义和计算法则
一个数除以分数
圆锥的体积
立体图形的认识
统计表
倒数的认识
简单应用题
数的意义
数学六年级下学期 第三单元测试题
数学六年级下学期 第一单元测试题
复合应用题
圆柱的表面积
数学六年级下学期 第四单元测试题(二)
《分数的意义》多媒体教学设计
数学六年级下学期 第一单元测试题(三)
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |