2016-10-25
收藏
教学目标
1.理解.
2.正确应用化简比.
3.培养学生的抽象概括能力,渗透转化的数学思想.
教学重点
理解.
教学难点
正确应用化简比.
教学过程
一、复习引入
(一)复习商不变的性质
1.谁能直接说出6025的商?
2.你是怎么想的?
3.根据是什么?内容是什么?
(二)复习分数的基本性质
约分:
通分:
根据是什么?内容是什么?
(三)求比值
3∶2 8∶4 7∶21 27∶9
5∶25 16∶4 24∶5 2∶1
二、讲授新课
我们以前学过商不变的性质和分数的基本性质,联想这两个性质,想一想:在比中又有什么样的规律?
(一)
1.把练习3中8∶4和2∶1这两个比找出来
2.教师提问
这两个比有什么共同点吗?(比值都相等)
这两个比有什么不同点吗?(前项和后项都不同)
我们可以说8∶4和2∶1相等吗?
你是怎么想的?
(1)根据比与除法的关系(商不变的性质)
8∶4=84=(84)(44)=21=2∶1
(2)根据比与分数的关系(分数基本性质)
8∶4= = = =2∶1
3.学生尝试概括(演示课件)
(1)教师板书:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变.
板书课题:
(2)教师强调:同时相同0除外几个关键词
(二)化简比
1.练习引入
学校有8个篮球,12个排球,篮球和排球个数的比是多少?
(1)篮球和排球的个数比是8∶12
(2)篮球和排球的个数比是2∶3
讨论:篮球和排球的个数比是写成8∶12好,还是写成2∶3好?
2.最简单的整数比
最简单的整数比就是比的前项和后项是互质数,如2∶3就是最简单的整数比.
3.化简比
例1.把下面各比化成最简单的整数比.
(1)14∶21=(147)∶(217)=2∶3
讨论:化简整数比的方法是什么?
(2) ∶ =( 18)∶( 18)=3∶4
讨论:分数比怎么化简?为什么要乘上18?乘上9可以吗?
(3)1.25∶2=(1.25100)∶(2100)=125∶200=5∶8
1.25∶2=(1.254)∶(24)=5∶8(更好)
讨论:怎样把小数比化成最简单的整数比?
4.小结化简比的方法
(1)都化成整数比
(2)利用把比的前、后项同时除以它们的最大公约数,直到前、后项互质为止.
(三)区别化简比和求比值
1.练习
比
最简单的整数比
比值
25∶100
∶
4.2∶1.4
1∶
2.讨论:化简比和求比值的区别是什么?
区别:化简比的结果还是一个比,是一个最简单的整数比;求比值的结果是一个数.
例如:25∶100化简比的结果是 ,读作1比4,求比值的结果是 ,读作四分之一.
第 1 2 页
五年级数学最小公倍数检测题2
复数的四则运算课件
数豆子教案
五年级数学平行四边形的面积检测卷
双曲线的几何性质课件2
连减教案
五年级数学下册第一单元检测试卷1
小数加减法教案
连加教案
函数的定义域和值域课件
认识平面图形教案1
归纳推理课件
数系的扩充课件
双曲线的几何性质课件3
认识平面图形教案3
比多少教案1
平面向量数量积的物理背景及其含义教案
平面向量共线的坐标表示教案
小数加法定律教案
双曲线的几何性质课件1
认识上下和前后教案
认识平面图形教案2
五年级数学下册第五单元检测试卷2
数一数教案4
平面向量的实际背景及基本概念教案
五年级数学最小公倍数检测题1
五年级数学下册期末测试卷1
五年级数学下册第五单元检测试卷3
认识图形教案
利用函数的单调性课件
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |