最小公倍数_教学设计 - 查字典数学网
数学最小公倍数
首页>数学教研>教学设计>最小公倍数

最小公倍数

2013-07-08 收藏

最小公倍数

教学目标

1.掌握公倍数、最小公倍数两个概念.

2.理解求最小公倍数的算理,掌握用分解质因数求最小公倍数的方法.

教学重点

建立公倍数和最小公倍数的概念,掌握求两个数最小公倍数的方法.

教学难点

理解求两个数最小公倍数的算理.

教学步骤

一、铺垫孕伏.

1.导入:这节课我们开始学习有关最小公倍数的知识.

(板书:最小公倍数)

2.复习倍数的概念.

二、探究新知.

教学例1【演示课件“最小公倍数”】

例1、顺次写出4的几个倍数和6的几个倍数.它们公有的倍数是哪几个?其中最小的是多少?

4的倍数有:4、8、12、16、20、24、28、32、36……

6的倍数有:6、12、18、24、30、36……

4和6的公倍数有:12、24、36……

其中最小的一个是12.

1、学生分组讨论总结公倍数、最小公倍数的意义.

2、用集合图表示4和6的公倍数.

3、质疑:两个数的公倍数有什么特点?有没有最大的公倍数?

明确:因为每一个数的倍数的个数都是无限的,所以两个数的公倍数的个数也是无限的.因此,两个数没有最大的倍数.

4、反馈练习.

把6和8的倍数和公倍数不超过50的填在下面的空圈里,再找出它们的最小公倍数是几.

明确:50以内6和8的公倍数只有2个;如果扩展数的范围,也就是50以外6和8的公倍数则是无限的.

(二)教学例2【演示课件“最小公倍数”】

引入:我们用分解质因数的方法求两个数的最小公倍数.

例2:求18和30的最小公倍数.

1、用短除式分别把18和30分解质因数.

板书: 18=2×3×3

30=2×3×5

教师提问:18的倍数必须包含哪些质因数?

(18的倍数包含18的所有质因数)

30的倍数必须包含哪些质因数?

(30的倍数包含30的所有质因数)

18和30的公倍数必须包含哪些质因数?

(既要包含18的所有质因数,又要包含30的所有质因数)

2、观察集合图:18和30的最小公倍数应包含哪些质因数?

教师明确:18和30的最小公倍数里,只要包含它们全部公有的质因数(1个2和1个3)以及各自独有的质因数(3和5)就可以了.2×3×3×5=90,所以18和30的最小公倍数是90.

3、小组讨论:如果少一个或多一个质因数行不行?

教师明确:如果少一个质因数,就不能保证公倍数里包含18和30全部的质因数,因而就不能得到它们的最小公倍数;如果多一个质因数,虽是18和30的公倍数,但不能保证是最小公倍数.

板书:

18和30的最小公倍数是2×3×3×5=90

4、反馈练习.

(1)先把下面两个数分解质因数,再求出它们的最小公倍数.

30=( )×( )×( )

42=( )×( )×( )

30和42的最小公倍数是( )×( )×( )×( )=( )

(2)A=2×2 B=2×2×3

A和B的最小公倍数是( )×( )×( )=( )

(3)用分解质因数法求24和18的最小公倍数时,小华得72,小林得144.谁做错了?

可能错在哪里?

5、求最小公倍数的一般书写格式.

①引导学生把两个短除式合并成一个.

板书:

②明确:综合短除式中所有除数和商与18和30的最小公倍数90所包含的所有质因数是一一对应的,因此把短除式中所有的除数和商乘起来,就得到18和30的最小公倍数.

③反馈练习:求30和45的最小公倍数.

④总结方法:求两个数的最小公倍数,先用这两个数公有的质因数连续去除(一般从最小的开始),一直除到所得的商是互质数为止,然后把所有的除数和最后的两个商连乘起来.

⑤反馈练习:求下面每组数的最小公倍数

6和8 24和20 28和21 16和72

三、全课小结.

今天这节课我们主要研究了用什么方法求两个数的最小公倍数,它是为以后学习通分做准备的,希望大家能熟练的掌握这部分知识.

四、随堂练习【演示课件“最小公倍数”】

1.填空.

(1)A=2×3×5 (2)A=2×2×5

B=3×5×7 B=( )×5×( )

A和B和最小公倍数是( ). A和B的最小公倍数是2×2×5×7=140.

2.判断.

(1)两个数的积一定是这两个数的公倍数.( )

(2)两个数的积一定是这两个数的最小公倍数.( )

五、布置作业.

求下面每组数的最小公倍数.

12和15 30和40 36和54 22和33

六、板书设计.

最小公倍数

例1 顺次写出4的几个倍数和6的几个倍数.它们公有的倍数是哪几个?其中最小的是多少?

4的倍数有:4、8、12、16、20、M、28、32、36……

6的倍数有:6、12、18、30、30、36……

4和6公有的倍数有: 12、24、36……

其中最小的一个是12.

例2 求18和30的最小公倍数.

18和30的最小公倍数是 2×3×3×5=90.

探究活动

最小公倍数

活动目的

1、理解最小公倍数的意义.

2、培养学生良好的思维品质和科学的思维方法.

活动题目

有两个自然数,它们的最小公倍数是48,那么这两个自然数各是多少?

活动过程

1、学生分小组讨论.

2、小组汇报.

3、师生共同研究方法,理解求最小公倍数的几种情况.

参考答案

由题意可知,48是所求两个自然数的最小公倍数,那么所求两个自然数一定是48的约数,因此我们可以找出48的所有约数,然后进行两两组合,便可找出符合条件的数组.

48的约数有:1、2、3、4、6、8、12、16、24、48经试验,符合条件的数组有:1和48,2和48,3和16,3和48,4和48,6和16,8和48,12和16,12和48,16和24,16和48,24和48,48和48.一共有14个数组.

活动说明

学生寻找符合条件的答案的过程,实际上就是培养学生思维有序化的过程.

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
大家都在看

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限