教学目标
①知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;
②学会比较两个实数的大小;
③了解在有理数范围内的运算及运算法则、运算性质等在实数范围内仍然成立,能熟练地进行实数运算;在实数运算时,根据问题的要求取其近似值,转化为有理数进行计算;
通过学习“实数与数轴上的点的一一对应关系”,渗透“数形结合”的数学思想。
教学重点与难点
重点:实数与数轴上的点一一对应关系。
难点:对“实数与数轴上的点一一对应关系”的理解。
教学准备
教师:直径为1cm的硬纸板的圆。
教学设计
教学过程
试一试
我们知道有理数都可以用数轴上的点来表示,但是数轴上的点是否都表示有理数?无理数可以用数轴上的点来表示吗?
①课件演示课本第175页探究题;学生动手操作,利用课前准备好的硬纸板的圆片在自己画好的数轴上实践体会。
②你能在数轴上画出坐标是2的点吗?画一画,说说你的方法。
教师启发学生得出结论:每一个无理数都可以用数轴上的一个点表示出来。
练习:学生自己完成课本第178页练习第1题。
在此基础上,教师引导学生进一步得出结论:在数从有理数扩充到实数后,实数与数轴上的点是一一对应的。即:每一个实数都可以用数轴上的点来表示;数轴上的每一个点都表示一个实数。
类比在有理数范围内相反数、绝对值的几何意义,结合数轴,在实数范围内理解相反数、绝对值的几何意义。
③深入探讨:平面直角坐标系中的点与有序实数对之间也存在着一一对应关系吗?
比一比
①问:利用数轴,我们怎样比较两个有理数的大小?
在数轴上表示的数,右边的数总比左边的大。这个结论在实数范围内也成立。
②我们还有什么方法可以比较两个实数的大小吗?
两个正实数的绝对值较大的值也较大;两个负实数的绝对值大的值反而小;正数大于零,负数小于零,正数大于负数。
例1比较下列各组数里两个数的大小:
(1)
分析:像例1(1),即可以将
的近似值,再通过比较它们近似值(取近似值时,注意精确度要相同)的大小,从而比较它们的大小。
算一算
问:在数从有理数扩充到实数后,我们已经学过哪些运算?
答:加、减、乘、除、乘方和开方运算。
接着问:有哪些规定吗?
除法运算中除数不为0,而且只有正数及0可以进行开平方运算,任何一个实数都可以进行开立方运算。
问:有理数满足哪些运算律?
加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
乘法交换律:ab=ba
乘法结合律:(ab)c=a(bc)
分配律:a(b+c)=ab+ac
我们如何知道运算律在实数范围内是否适用?
例2计算下列各式的值:
(1)
例3计算:
(1)
(2)
(3)
(在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似的有限小数去代替无理数,再进行计算。)
课堂巩固
课本第178页练习第2、3题。
小结
布置作业
①必做题:课本第179页习题10.3的第4、5、6、8题。
②选做题:课本第179页习题10.3的第9题。
③备选题:
(1)若m表示一个实数,则-m表示一个()
A.负数 B.正数 C.实数 D.非正数
(2)计算:
①求5的算术平方根与2的平方根之和(保留三个有效数字);
②
③已知
④个钢球的体积是200cm3,求它的半径(π取3.14,结果保留三个有效数字)。
设计意图说明
除了课件演示外再让学生动手实践操作的目的是让学生直观认识到可以用数轴上的点来表示无理数,而每一个无理数都可以用数轴上的一个点来表示,即无理数与数轴上的点之间的对应关系。
通过练习,让学生对于实数可以用数轴上的点表示,数轴上的一个点表示一个实数有了直观的认识,体会实数与数轴上的点之间的一一对应关系。将数与图形联系起来,体会数形结合的思想。
教师在此环节中要留给学生充足的时间,让学生自己归纳和总结。
让学生回忆有理数范围内比较大小的方法,体会在实数范围内这些比较两个数大小的方法依旧成立。
通过例题,使学生掌握比较两数大小的方法。
鼓励学生多举一些实际例子来验证。其意义一是为了避免学生产生片面认识,以为从几个例子就可以得出普遍结论,二让学生了解结论的重要性。
例2与例3要求是不同的。例2在运算中遇到无理数但并不需要求出结果的近似值,例3却不同,不仅在运算中遇到无理数且需要求出结果的近似值,在教学中应该提醒学生注意按照问题的要求解决问题。
设计思想
本节课的教学设计中注重从学生已有的知识经验出发,如学生在有理数章节中已经学习了有理数可以用数轴上的点表示,所以在教学中充分发挥学生的主体意识,让学生主动参与学习活动,除了让学生看课件演示外,更通过让学生动手实验操作,感悟知识的生成、发展和变化,自己探索得到结论:实数与数轴上的点的一一对应关系,从而培养学生自主探索的学习方法。
在“比一比”教学环节中,先让学生回忆有理数范围内数的大小的比较方法,体会在实数范围内这些比较两个数大小的方法依旧成立,在比较的过程中让学生体会一个很重要的数学思想:转化思想。
在“算一算”教学环节中,先复习七年级上已经学习过的有理数范围内的运算律,然后提出一个富有启发性且具有探索意义的问题“我们如何知道运算律在实数范围内是否适用?”
然后鼓励学生多举一些例子来验证,其意义一是为了避免学生产生片面认识,以为从几个例子就可以得出普遍结论,二让学生了解结论的重要性。