编者小语:奥数网为大家带来了趣味的数学题,开动你的脑筋拓展你的思维,看看你能轻松的搞定这道题吗?
孙膑,庞涓都是鬼谷子的徒弟。一天鬼谷子出了这道题目:他从2到99中选出两个不同的整数,把积告诉孙,把和告诉庞;庞说:我虽然不能确定这两个数是什么,但是我肯定你也不知道这两个数是什么。孙说:我本来的确不知道,但是听你这么一说,我现在能够确定这两个数字了。庞说:既然你这么说,我现在也知道这两个数字是什么了。
解答:因庞涓肯定两数不会都是质数,所以两数和不会是偶数,否则由小数的Goldbach猜想,小偶数必能分成两奇质数之和,庞涓便不能确定孙膑不知答案了。所以两数和应是奇数。此外,这两数也不会是2及一个奇质数。
孙膑从庞涓的说话,可知道两数一奇一偶。孙膑所知道的两数积,应为2^a.b的形式,其中a0,b是奇数。如b可分解成b=cd,c1,d1,则答案可能是(2^a,b),(2^a.c,d)或(2^a.d,c),便仍未知答案,故此b为质数。但由上面庞涓的说话,a1。
庞涓从孙膑的说话后,若两数和表示成2^a+b的形式是唯一,便也能得知答案。以上推理其实并不全面,但已能得到多于一组答案。例子如下:
(4,13)
庞涓知x+y=17,x及y不能都是质数。
孙膑知xy=52,未听庞涓说话前,(x,y)可能是(2,26),(4,13)。但现在知一奇一偶,只能是(4,13)。
庞涓知(x,y)不会是(2,15)[因30=2*15=6*5=10*3],不会是(6,11)[因66=2*33=6*11=22*3],不会是(8,9)[因72=8*9=24*3],不会是(10,7)[因70=2*35=10*7=14*5],不会是(12,5)[因60=4*15=12*5=20*3],不会是(14,3)[因42=2*21=6*7=14*3],只有(4,13)孙膑才肯定知答案。
但还有其它可能,如
(16,13) 庞涓知29,孙膑知208
(4,37) 庞涓知41,孙膑知148
(16,37) 庞涓知53,孙膑知592
(16,43) 庞涓知59,孙膑知688