2016-10-25
收藏
教学目的: 使学生掌握正方形的定义、性质和判定,会用正方形的概念和性质进行有关的论证和计算,理解正方形与平行四边形、矩形、菱形的内在联系和区别,进一步加深对“特殊与一般的认识”
教学重点: 正方形的定义.
教学难点: 正方形与矩形、菱形间的关系.
教学方法:双边合作 如:在教学时可播放转换动画使学生获得生动、形象的可视思维过程,从而掌握判定一个四边形是正方形的方法.为了活跃学生的思维,可以得出下列问题让学生思考:
(1)对角线相等的菱形是正方形吗?为什么?
(2)对角线互相垂直的矩形是正方形吗?为什么?
(3)对角线垂直且相等的四边形是正方形吗?为什么?如果不是,应该加上什么条件?
(4)能说“四条边都相等的四边形是正方形”吗?为什么?
(5)说“四个角相等的四边形是正方形”,对吗?
教学过程:
让学生将事先准备好的矩形纸片,按要求对折一下,裁出正方形纸片.
问:所得的图形是矩形吗?它与一般的矩形有什么不同?
所得的图形是菱形吗?它与一般的菱形有什么不同?
所得的图形在小学里学习时称它为什么图形?它有什么特点?
由此得出正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.
(一)新课
由正方形的定义可以得知:正方形是有一组邻边相等的矩形,又是有一个角是直角的菱形,因此正方形具有矩形的性质,同时又具有菱形的性质.
请同学们推断出正方形具有哪些性质?
性质1、(1)正方形的四个角都是直角。
(2)正方形的四条边相等。
性质2、(1)正方形的两条对角线相等。
(2)正方形的两条对角线互相垂直平分。
(3)正方形的每条对角线平分一组对角。
例1 求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形.
已知:四边形ABCD是正方形,对角线AC、BD相交于点O.
求证:△ABO、△BCO、△CDO、△DAO是全等的
等腰直角三角形.
证明:∵四边形ABCD是正方形,
两角和与差的三角函数
两角和与差的余弦公式第一课时
排列第一课时教学课件
平面向量的坐标运算3
幂函数的性质的应用
数列2
两角和与差的三角函数(4)
平面向量的坐标运算1
平面向量数量积的坐标表示、模、夹角
均值不等式复习课
模拟方法应用2)
棱锥的概念和性质
平面性质的基本练习课
任意三角函数的定义说课
两点间的距离公式
平面向量的坐标运算
平面向量的实际背景及基本概念
平面向量的复习
两角和与差的三角函数(2)
排序问题(2)
茎叶图
逻辑联结词(1)
平面向量的概念
两角和与差的余弦
逻辑联结词(二)
两角和与差的余弦1
任意角的三角函数概念复习
空间图形
解斜三角形总结课
平面向量数量积的物理背景及其含义2
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |