2016-09-27
收藏
同学们都在忙碌地复习自己的功课,为了帮助大家能够在考前对自己多学的知识点有所巩固,下文整理了这篇2017中考数学考前必做试题,希望可以帮助到大家!
1.(2013年四川宜宾)矩形具有而菱形不具有的性质是()
A.两组对边分别平行 B.对角线相等 C.对角线互相平分 D.两组对角分别相等
2.(2013年四川巴中)如图4335,菱形ABCD的两条对角线相交于点O,若AC=6,BD=4,则菱形ABCD的周长是()
A.24 B.16 C.4 13 D.2 13
3.(2013年海南)将△ABC沿BC方向平移得到△DCE,连接AD,下列条件中能够判定四边形ACED为菱形的是()
A.AB=BC B.AC=BC C.∠B=60° D.∠ACB=60°
4.年内蒙古赤峰)如图4×4的方格中每个小正方形的边长都是1,则S四边形ABDC与S四边形ECDF的大小关系是()
A.S四边形ABDC=S四边形ECDF B.S四边形ABDC< S四边形ECDF
C.S四边形ABDC=S四边形ECDF+1 D.S四边形ABDC=S四边形ECDF+2
5.(2013年四川凉山州菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()
A.14 B.15 C.16 D.17
6.(2013年湖南邵阳)将△ABC绕AC的中点O按顺时针旋转180°得到△CDA,添加一个条件____________,使四边形ABCD为矩形.
7.(2013年宁夏)在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F.
求证:DF=DC.
8.在△ABC中,∠B=90°,AB=6 cm,BC=8 cm.将△ABC沿射线BC方向平移10 cm,得到△DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD是菱形.
9.(2013年辽宁铁岭)在△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.
(1)求证:四边形AEBD是矩形;
(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.
参考答案
1.B 2.C 3.B 4.A 5.C
6.∠B=90°或∠BAC+∠BCA=90°
7.证明:∵四边形ABCD是矩形,
∴AB=CD,AD∥BC,∠B=90°.
∵DF⊥AE,∴∠AFD=∠B=90°.
∵AD∥BC,∴∠DAE=∠AEB.
又∵AD=AE,∴△ADF≌△EAB.
∴DF=AB.∴DF=DC.
8.证明:由平移变换的性质,得
CF=AD=10 cm,DF=AC,
∵∠B=90°,AB=6 cm,BC=8 cm,
∴AC2=AB2+CB2,即AC=10 cm.
∴AC=DF=AD=CF=10 cm.
∴四边形ACFD是菱形.
9.(1)证明:∵点O为AB的中点,OE=OD,
∴四边形AEBD是平行四边形.
∵AB=AC,AD是△ABC的角平分线,
∴AD⊥BC.即∠ADB=90°.
∴四边形AEBD是矩形.
(2)解:当△ABC是等腰直角三角形时,
矩形AEBD是正方形.
∵△ABC是等腰直角三角形,
∴∠BAD=∠CAD=∠DBA=45°.∴BD=AD.
由(1)知四边形AEBD是矩形,
∴四边形AEBD是正方形.
B级 中等题
10.(2013年四川南充)把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()
A.12 B. 24 C. 12 3 D. 16 3
11.(2013年内蒙古呼和浩特)在四边形ABCD中,对角线 AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH 的面积为________.
12.(2013年福建莆田)正方形ABCD的边长为4,点P在DC边上,且DP=1,点Q是 AC上一动点,则DQ+PQ的最小值为____________.
13.(2013年山东青岛)已知:在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.
(1)求证:△ABM≌△DCM;
(2)判断四边形MENF是什么特殊四边形,并证明你的结论;
(3)当AD∶AB=__________时,四边形MENF是正方形(只写结论,不需证明).
C级 拔尖题
14.(2013年内蒙古赤峰)如图4347,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,点D从点C出发沿CA方向以4 cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t s(0< t ≤ 15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.
参考答案
10.D 11.12
12.5 解析:连接BP,交AC于点Q,连接QD.∵点B与点D关于AC对称,∴BP的长即为PQ+DQ的最小值,
∵CB=4,DP=1.∴CP=3,在Rt△BCP中,
BP=BC2+CP2=42+32=5.
13.(1)证明:在矩形ABCD中,
AB=CD,∠A=∠D=90°,
又∵M是AD的中点,∴AM=DM.
∴△ABM≌△DCM(SAS).
(2)解:四边形MENF是菱形.证明如下:
E,F,N分别是BM,CM,CB的中点,
∴NE∥MF,NE=MF.
∴四边形MENF是平行四边形.
由(1),得BM=CM,∴ME=MF.
∴四边形MENF是菱形.
(3)2∶1 解析:当AD∶AB=2∶1时,四边形MENF是正方形.理由:
∵M为AD中点,∴AD=2AM.
∵AD∶AB=2∶1,∴AM=AB.
∵∠A=90,∴∠ABM=∠AMB=45°.
同理∠DMC=45°,∴∠EMF=180°-45°-45°=90°.
∵四边形MENF是菱形,∴菱形MENF是正方形.
14.解:(1)在△DFC中,∠DFC=90°,∠C=30°,DC=4t,
∴DF=2t,又∵AE=2t,∴AE=DF.
(2)能.理由如下:
∵AB⊥BC,DF⊥BC,∴AE∥DF.
又∵AE=DF,∴四边形AEFD为平行四边形.
当AE=AD时,四边形AEFD是菱形,即60-4t=2t.
解得t=10 s,
∴当t=10 s时,四边形AEFD为菱形.
(3)①当∠DEF=90°时,由(2)知EF∥AD,
∴∠ADE=∠DEF=90°.
∵∠A=60°,∴AD=AE•cos60°=t.
又AD=60-4t,即60-4t=t,解得t=12 s.
②当∠EDF=90°时,四边形EBFD为矩形.
在Rt△AED中,∠A=60°,则∠ADE=30°.
∴AD=2AE,即60-4t=4t,解得t=152 s.
③若∠EFD=90°,则E与B重合,D与A重合,此种情况不存在.
综上所述,当t=152 s或t=12 s时,△DEF为直角三角形.
B级 中等题
10.若一多项式除以2x2-3,得到的商式为7x-4,余式为-5x+2,则此多项式为()
A.14x3-8x2-26x+14 B.14x3-8x2-26x-10
C.-10x3+4x2-8x-10 D.-10x3+4x2+22x-10
11.(2011年安徽芜湖)如图132,从边长为(a+4) cm的正方形纸片中剪去一个边长为(a+1) cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()
A.(2a2+5a) cm2 B.(3a+15) cm2 C.(6a+9) cm2 D.(6a+15) cm2
12.若关于x的多项式-5x3-(2m-1)x2+(2-3n)x-1不含二次项和一次项,求m,n的值.
13.(2012年山西)先化简,再求值:(2x+3)(2x-3)-4x(x-1)+(x-2)2,其中x=-3.
参考答案
10.A 11.D
12.解:2m-1=0,2-3n=0.
解得m=12,n=23.
13.解:原式=4x2-9-4x2+4x+x2-4x+4=x2-5.
当x=-3时,原式=(-3)2-5=3-5=-2.
C级 拔尖题
14.利民商店出售一种原价为a的商品,有如下几种方案:
(1)先提价10%,再降价10%;(2)先降价10%,再提价10%;(3)先提价20%,再降价20%.
问用这三种方案调价的结果是否一样?最后是不是都恢复了原价?
参考答案
14.解:方案(1)的调价结果为:
(1+10%)(1-10%)a=0.99a;
方案(2)的调价结果为:
(1-10%)(1+10%)a=0.99a;
方案(3)的调价结果为:
(1+20%)(1-20%)a=0.96a.
由此可以得到这三种方案的调价结果是不一样的.最后都没有恢复原价.
2017中考数学考前必做试题的内容,希望符合大家的实际需要。
人教版七年级上册数学第三章3.3解一元一次方程(二)——去括号与去分母第2课时配套练习册答案
青岛版八年级上册数学第1章1.3尺规作图第3课时配套练习册答案
青岛版八年级上册数学第1章1.3尺规作图第2课时配套练习册答案
人教版七年级上册数学第四章4.1.1立体图形与平面图形配套练习册答案
青岛版八年级上册数学第2章2.2轴对称的基本性质第2课时配套练习册答案
人教版七年级上册数学第二章2.2整式的加减第1课时配套练习册答案
人教版七年级上册数学期末综合练习(二)配套练习册答案
青岛版八年级上册数学第2章2.6等腰三角形第2课时配套练习册答案
人教版七年级上册数学第三章3.2解一元一次方程(一)——合并同类项与移项配套练习册答案
人教版七年级上册数学第三章3.4实际问题与一元一次方程第1课时配套练习册答案
人教版七年级上册数学期中综合练习配套练习册答案
青岛版八年级上册数学3.1分式的基本性质第1课时配套练习册答案
人教版七年级上册数学第四章4.3.2角的比较与运算配套练习册答案
青岛版八年级上册数学第2章2.5角平分线的性质配套练习册答案
青岛版八年级上册数学第2章2.6等腰三角形第3课时配套练习册答案
青岛版八年级上册数学第1章1.2怎样判定三角形的全等第2课时配套练习册答案
青岛版八年级上册数学第2章2.1图形的轴对称配套练习册答案
青岛版八年级上册数学第2章2.4线段的垂直平分线第1课时配套练习册答案
人教版七年级上册数学第四章4.1.2点、线、面、体配套练习册答案
人教版七年级上册数学期末综合练习(一)配套练习册答案
人教版七年级上册数学第四章4.2直线、射线、线段第2课时配套练习册答案
青岛版八年级上册数学第2章2.2轴对称的基本性质第1课时配套练习册答案
人教版七年级上册数学第四章4.2直线、射线、线段第1课时配套练习册答案
人教版七年级上册数学第三章综合练习(一)配套练习册答案
人教版七年级上册数学第四章4.3.1角配套练习册答案
青岛版八年级上册数学第1章检测站配套练习册答案
人教版七年级上册数学第三章3.1.2等式的性质配套练习册答案
青岛版八年级上册数学第2章2.3轴对称图形配套练习册答案
青岛版八年级上册数学第1章1.3尺规作图第1课时配套练习册答案
人教版七年级上册数学第二章2.1整式第3课时配套练习册答案
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |