2016-07-01
收藏
例1(补充)已知:如图,ABCD中,E、F分别是AD、BC的中点,求证:BE=DF.
分析:证明BE=DF,可以证明两个三角形全等,也可以证明
四边形BEDF是平行四边形,比较方法,可以看出第二种方法简单.
证明:∵四边形ABCD是平行四边形,
∴AD∥CB,AD=CD.
∵E、F分别是AD、BC的中点,
∴DE∥BF,且DE=AD,BF=BC.
∴DE=BF.
∴四边形BEDF是平行四边形(一组对边平行且相等的四边形平行四边形).
∴BE=DF.
此题综合运用了平行四边形的性质和判定,先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用知识较多,因此应使学生获得清晰的证明思路.
例2(补充)已知:如图,ABCD中,E、F分别是AC上两点,且BE⊥AC于E,DF⊥AC于F.求证:四边形BEDF是平行四边形.
分析:因为BE⊥AC于E,DF⊥AC于F,所以BE∥DF.需再证明BE=DF,这需要证明△ABE与△CDF全等,由角角边即可.
证明:∵四边形ABCD是平行四边形,
∴AB=CD,且AB∥CD.
∴∠BAE=∠DCF.
∵BE⊥AC于E,DF⊥AC于F,
∴BE∥DF,且∠BEA=∠DFC=90°.
∴△ABE≌△CDF(AAS).
∴BE=DF.
∴四边形BEDF是平行四边形(一组对边平行且相等的四边形平行四边形).
六、课堂练习
1.(选择)在下列给出的条件中,能判定四边形ABCD为平行四边形的是().
(A)AB∥CD,AD=BC(B)∠A=∠B,∠C=∠D
(C)AB=CD,AD=BC(D)AB=AD,CB=CD
2.已知:如图,AC∥ED,点B在AC上,且AB=ED=BC,找出图中的平行四边形,并说明理由.
3.已知:如图,在ABCD中,AE、CF分别是∠DAB、∠BCD的平分线.
求证:四边形AFCE是平行四边形
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
初二数学视频
更多
相关数学教学设计推荐
大家都在看
一年级数学连加减课件
一年级数学数豆子读数写数课件
一年级数学读数和写数1
一年级数学比长短2
一年级数学可爱的企鹅课件
一年级数学识图形练习课件
一年级数学估一估量一量课件
一年级数学小熊送信课件
一年级数学操场上课件
一年级数学买气球课件
一年级数学拔萝卜课件
一年级数学文具有趣的数字
一年级数学表格复习
一年级数学美丽的田园课件
一年级数学轻重课件2
一年级数学龟兔赛跑课件
一年级数学移一移摆一摆
一年级数学100以内数的认识2
一年级数学摘桃子课件
一年级数学摄影展览课件
一年级数学买衣服课件
一年级数学今天我当家课件
一年级数学圆的认识
一年级数学轻重课件1
一年级数学长度的比较
一年级数学捞大鱼游戏
一年级数学发新书课件
一年级数学乘船课件
一年级数学加减法课件
一年级数学分房子课件
| 小学 |
| 初中 |
| 高中 |
| 不限 |
| 一年级 | 二年级 |
| 三年级 | 四年级 |
| 五年级 | 六年级 |
| 初一 | 初二 |
| 初三 | 高一 |
| 高二 | 高三 |
| 小考 | 中考 |
| 高考 |
| 不限 |
| 数学教案 |
| 数学课件 |
| 数学试题 |
| 不限 |
| 人教版 | 苏教版 |
| 北师版 | 冀教版 |
| 西师版 | 浙教版 |
| 青岛版 | 北京版 |
| 华师大版 | 湘教版 |
| 鲁教版 | 苏科版 |
| 沪教版 | 新课标A版 |
| 新课标B版 | 上海教育版 |
| 部编版 |
| 不限 |
| 上册 |
| 下册 |
| 不限 |