2016-06-29
收藏
一、创设情境
一次函数关系式y=kx+b(k≠0),如果知道了k与b的值,函数解析式就确定了,那么有怎样的条件才能求出k和b呢?
问题1已知一个一次函数当自变量x=-2时,函数值y=-1,当x=3时,y=-3.能否写出这个一次函数的解析式呢?
根据一次函数的定义,可以设这个一次函数为:y=kx+b(k≠0),问题就归结为如何求出k与b的值.
由已知条件x=-2时,y=-1,得-1=-2k+b.
由已知条件x=3时,y=-3,得-3=3k+b.
两个条件都要满足,即解关于x的二元一次方程
解得所以,一次函数解析式为.
问题2已知弹簧的长度y(厘米)在一定的限度内是所挂物质量x(千克)的一次函数.现已测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7.2厘米,求这个一次函数的关系式.
考虑这个问题中的不挂物体时弹簧的长度6厘米和挂4千克质量的重物时,弹簧的长度7.2厘米,与一次函数关系式中的两个x、y有什么关系?
二、探究归纳
上题可作如下分析:
已知y是x的函数关系式是一次函数,则关系式必是y=kx+b的形式,所以要求的就是系数k和b的值.而两个已知条件就是x和y的两组对应值,也就是当x=0时,y=6;当x=4时,y=7.2.可以分别将它们代入函数式,转化为求k与b的二元一次方程组,进而求得k与b的值.
解设所求函数的关系式是y=kx+b(k≠0),由题意,得
解这个方程组,得
所以所求函数的关系式是y=0.3x+6.(其中自变量有一定的范围)
讨论1.本题中把两对函数值代入解析式后,求解k和b的过程,转化为关于k和b的二元一次方程组的问题.
2.这个问题是与实际问题有关的函数,自变量往往有一定的范围.
问题3若一次函数y=mx-(m-2)过点(0,3),求m的值.
分析考虑到直线y=mx-(m-2)过点(0,3),说明点(0,3)在直线上,这里虽然已知条件中没有直接给出x和y的对应值,但由于图象上每一点的坐标(x,y)代表了函数的一对对应值,它的横坐标x表示自变量的某一个值,纵坐标y表示与它对应的函数值.所以此题转化为已知x=0时,y=3,求m.即求关于m的一元一次方程.
解当x=0时,y=3.即:3=-(m-2).解得m=-1.
这种先设待求函数关系式(其中含有未知的常数系数),再根据条件列出方程或方程组,求出未知系数,从而得到所求结果的方法
数学百科知识专题:合并同类项
新初中百科数学知识
数学百科知识专题:解一元一次不等式组
2014数学百科知识竞赛题
精选初中数学平行四边形判定讲解
初中数学百科知识竞赛题精选
初中生必备数学百科知识大全:经济数量分析
数学百科知识专题:去、添括号法则
数学百科知识专题:解方程
数学百科知识大全:线性系统
数学百科知识专题:判断四数成比例
2014年新初中百科数学知识
数学百科知识专题:求定义域
2014数学知识百科人口统计学
数学百科知识专题:解比例
2015初中数学平行四边形性质整理
初中新百科数学知识
数学百科知识专题:正比例与反比例
数学百科知识点:几何定理机器证明
实用工具:常用数学公式
数学百科知识专题:有理数的减法运算
数学百科知识专题:因式分解
数学百科知识专题:二次三项式的因式分解
初中数学百科知识:数量经济学
针对中学生必知的数学常识
2015精选初中利润与折扣数学公式总结
数学百科知识专题:用完全平方公式因式分解
数学百科知识专题:有理数的加法运算
数学百科知识专题:判断四式成比例
精选初中课外数学平行四边形定理总结
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |