新人教版八年级数学下册《19.2.2一次函数(4)》教案_教学设计 - 查字典数学网
数学新人教版八年级数学下册...
首页>数学教研>教学设计>新人教版八...

新人教版八年级数学下册《19.2.2一次函数(4)》教案

2016-06-29 收藏

一、创设情境

一次函数关系式y=kx+b(k≠0),如果知道了k与b的值,函数解析式就确定了,那么有怎样的条件才能求出k和b呢?

问题1已知一个一次函数当自变量x=-2时,函数值y=-1,当x=3时,y=-3.能否写出这个一次函数的解析式呢?

根据一次函数的定义,可以设这个一次函数为:y=kx+b(k≠0),问题就归结为如何求出k与b的值.

由已知条件x=-2时,y=-1,得-1=-2k+b.

由已知条件x=3时,y=-3,得-3=3k+b.

两个条件都要满足,即解关于x的二元一次方程

解得所以,一次函数解析式为.

问题2已知弹簧的长度y(厘米)在一定的限度内是所挂物质量x(千克)的一次函数.现已测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7.2厘米,求这个一次函数的关系式.

考虑这个问题中的不挂物体时弹簧的长度6厘米和挂4千克质量的重物时,弹簧的长度7.2厘米,与一次函数关系式中的两个x、y有什么关系?

二、探究归纳

上题可作如下分析:

已知y是x的函数关系式是一次函数,则关系式必是y=kx+b的形式,所以要求的就是系数k和b的值.而两个已知条件就是x和y的两组对应值,也就是当x=0时,y=6;当x=4时,y=7.2.可以分别将它们代入函数式,转化为求k与b的二元一次方程组,进而求得k与b的值.

解设所求函数的关系式是y=kx+b(k≠0),由题意,得

解这个方程组,得

所以所求函数的关系式是y=0.3x+6.(其中自变量有一定的范围)

讨论1.本题中把两对函数值代入解析式后,求解k和b的过程,转化为关于k和b的二元一次方程组的问题.

2.这个问题是与实际问题有关的函数,自变量往往有一定的范围.

问题3若一次函数y=mx-(m-2)过点(0,3),求m的值.

分析考虑到直线y=mx-(m-2)过点(0,3),说明点(0,3)在直线上,这里虽然已知条件中没有直接给出x和y的对应值,但由于图象上每一点的坐标(x,y)代表了函数的一对对应值,它的横坐标x表示自变量的某一个值,纵坐标y表示与它对应的函数值.所以此题转化为已知x=0时,y=3,求m.即求关于m的一元一次方程.

解当x=0时,y=3.即:3=-(m-2).解得m=-1.

这种先设待求函数关系式(其中含有未知的常数系数),再根据条件列出方程或方程组,求出未知系数,从而得到所求结果的方法 


查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
大家都在看

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限