2016-06-13
收藏
三角形是由三条线段顺次首尾相连,组成的一个闭合的平面图形是最基本的多边形。小编准备了高三数学专项练习,希望你喜欢。
一、选择题
1.在△ABC中,sinA=sinB,则△ABC是()
A.直角三角形B.锐角三角形
C.钝角三角形D.等腰三角形
答案 D
2.在△ABC中,若acosA=bcosB=ccosC,则△ABC是()
A.直角三角形B.等边三角形
C.钝角三角形D.等腰直角三角形
答案 B
解析 由正弦定理知:sinAcosA=sinBcosB=sinCcosC,
tanA=tanB=tanC,A=B=C.
3.在△ABC中,sinA=34,a=10,则边长c的取值范围是()
A.152,+B.(10,+)
C.(0,10) D.0,403
答案 D
解析 ∵csinC=asinA=403,c=403sinC.
4.在△ABC中,a=2bcosC,则这个三角形一定是()
A.等腰三角形B.直角三角形
C.等腰直角三角形D.等腰或直角三角形
答案 A
解析 由a=2bcosC得,sinA=2sinBcosC,
sin(B+C)=2sin Bcos C,
sin Bcos C+cos Bsin C=2sin Bcos C,
sin(B-C)=0,B=C.
5.在△ABC中,已知(b+c)∶(c+a)∶(a+b)=4∶5∶6,则sin A∶sin B∶sin C等于()
A.6∶5∶4 B.7∶5∶3
C.3∶5∶7 D.4∶5∶6
答案 B
解析 ∵(b+c)∶(c+a)∶(a+b)=4∶5∶6,
b+c4=c+a5=a+b6.
令b+c4=c+a5=a+b6=k (k0),
则b+c=4kc+a=5ka+b=6k,解得a=72kb=52kc=32k.
sinA∶sinB∶sinC=a∶b∶c=7∶5∶3.
6.已知三角形面积为14,外接圆面积为,则这个三角形的三边之积为()
A.1B.2
C.12D.4
答案 A
解析 设三角形外接圆半径为R,则由,
得R=1,由S△=12absinC=abc4R=abc4=14,abc=1.
二、填空题
7.在△ABC中,已知a=32,cosC=13,S△ABC=43,则b=________.
答案 23
解析 ∵cosC=13,sinC=223,
12absinC=43,b=23.
8.在△ABC中,角A,B,C的对边分别为a,b,c,已知A=60,a=3,b=1,则c=________.
答案 2
解析 由正弦定理asinA=bsinB,得3sin60=1sinB,
sinB=12,故B=30或150.由ab,
得AB,B=30,故C=90,
由勾股定理得c=2.
9.在单位圆上有三点A,B,C,设△ABC三边长分别为a,b,c,则asinA+b2sinB+2csinC=________.
答案 7
解析 ∵△ABC的外接圆直径为2R=2,
asinA=bsinB=csinC=2R=2,
asinA+b2sinB+2csinC=2+1+4=7.
10.在△ABC中,A=60,a=63,b=12,S△ABC=183,则a+b+csinA+sinB+sinC=________,c=________.
答案 12 6
解析 a+b+csinA+sinB+sinC=asinA=6332=12.
∵S△ABC=12absinC=126312sinC=183,
sinC=12,csinC=asinA=12,c=6.
三、解答题
11.在△ABC中,求证:a-ccosBb-ccosA=sinBsinA.
证明 因为在△ABC中,asinA=bsinB=csinC=2R,
所以左边=2RsinA-2RsinCcosB2RsinB-2RsinCcosA
=sin(B+C)-sinCcosBsin(A+C)-sinCcosA=sinBcosCsinAcosC=sinBsinA=右边.
所以等式成立,即a-ccosBb-ccosA=sinBsinA.
12.在△ABC中,已知a2tanB=b2tanA,试判断△ABC的形状.
解 设三角形外接圆半径为R,则a2tanB=b2tanA
a2sinBcosB=b2sinAcosA
4R2sin2AsinBcosB=4R2sin2BsinAcosA
sinAcosA=sinBcosB
sin2A=sin2B
2A=2B或2A+2B=
A=B或A+B=2.
△ABC为等腰三角形或直角三角形.
能力提升
13.在△ABC中,B=60,最大边与最小边之比为(3+1)∶2,则最大角为()
A.45B.60C.75D.90
答案 C
解析 设C为最大角,则A为最小角,则A+C=120,
sinCsinA=sin120-AsinA
=sin120cosA-cos120sinAsinA
=32tanA+12=3+12=32+12,
tanA=1,A=45,C=75.
14.在△ABC中,a,b,c分别是三个内角A,B,C的对边,若a=2,C=4,
cosB2=255,求△ABC的面积S.
解 cosB=2cos2B2-1=35,
故B为锐角,sinB=45.
所以sinA=sin(-B-C)=sin34-B=7210.
由正弦定理得c=asinCsinA=107,
所以S△ABC=12acsinB=12210745=87.
1.在△ABC中,有以下结论:
(1)A+B+C=
(2)sin(A+B)=sin C,cos(A+B)=-cos C;
(3)A+B2+C2=
(4)sin A+B2=cos C2,cos A+B2=sin C2,tan A+B2=1tan C2.
2.借助正弦定理可以进行三角形中边角关系的互化,从而进行三角形形状的判断、三角恒等式的证明.
高三数学专项练习就为大家介绍到这里,希望对你有所帮助。
用四舍五入法求近似数教案
求涉及几何图形的概率课件
实数教案4
平行四边形的判别教案1
平面图形的镶嵌教案
纵向式的条形统计图教案
立方根测试题1
相交线与平行线测试题3
二元一次方程的解和点的坐标教案
异分母分数教案
立方根测试题2
运算定律与简便计算教案8
除法运算性质教案
最大公因数和最小公倍数比较教案
从统计图分析数据的集中趋势教案
整式的乘除测试题1
运算定律与简便计算教案6
认识垂直教案
矩形教案4
整式的乘除测试题5
运算定律与简便计算教案2
有趣的溶解现象教案
整式的乘除测试题2
组合图形的面积教案
相交线与平行线测试题1
整式的乘除测试题4
二次根式的乘除运算教案
找等量关系列方程解应用题教案
重复的形教案
有序数对测试题1
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |