2016-05-31
收藏
查字典大学网给大家整理高二数学下册知识点总结,大家可以参考阅读,希望能帮助大家取得好成绩。
1.不等式的定义:a-b>0b, a-b=0img src=" http:="" www="" 51edu="" com="" uploadfile="" 2016="" 0513="" 20160513100434897="" gif="" />a=b, a-b<0
)2+
)2+
0, x1-x2<0,可得f(x1)/p p /p pstrong2.不等式的性质:/strong/p p① 不等式的性质可分为不等式基本性质和不等式运算性质两部分。/p p不等式基本性质有:/p p(1) a>bimg src=" http:="" www="" 51edu="" com="" uploadfile="" 2016="" 0513="" 20160513100434897="" gif="" />b
(2) a>b, b>cc (传递性)/p p /p p(3) a>bimg src=" http:="" www="" 51edu="" com="" uploadfile="" 2016="" 0513="" 20160513100434897="" gif="" />a+c>b+c (c∈R)
(4) c>0时,a>bbcc<0时,a>bimg src=" http:="" www="" 51edu="" com="" uploadfile="" 2016="" 0513="" 20160513100434897="" gif="" />ac
运算性质有:
(1) a>b, c>db+d。/p p /p p(2) a>b>0, c>d>0img src=" http:="" www="" 51edu="" com="" uploadfile="" 2016="" 0513="" 20160513100437677="" gif="" />ac>bd。
(3) a>b>0bn (n∈N, n>1)。/p p /p p(4) a>b>0img src=" http:="" www="" 51edu="" com="" uploadfile="" 2016="" 0513="" 20160513100437677="" gif="" />
img src=" http:="" www="" 51edu="" com="" uploadfile="" 2016="" 0513="" 20160513100441972="" gif="" />
(n∈N, n>1)。
应注意,上述性质中,条件与结论的逻辑关系有两种:“
”即推出关系和等价关系。一般地,证明不等式就是从条件出发施行一系列的推出变换。解不等式就是施行一系列的等价变换。因此,要正确理解和应用不等式性质。
② 关于不等式的性质的考察,主要有以下三类问题:
(1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。
(2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。
(3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。
有了上文梳理的高二数学下册知识点总结,相信大家对考试充满了信心,同时预祝大家考试取得好成绩。
高二数学平面向量的基本定理及坐标表示1
高二数学一元二次不等式的解法3
高二数学平面向量的坐标运算1
高二数学余弦定理4
高二数学基本算法语句3
高二数学向量数乘运算及其几何意义1
高二数学古典概型4
高二数学同角三角函数的基本关系式2
高二数学弧度制1
高二数学随机变量和数学期望2
高二数学秦九邵算法
高二数学一元二次不等式的解法1
高二数学平面向量的基本定理及坐标表示2
高二数学算法的基本逻辑结构1
高二数学基本算法语句4
高二数学条件语句4
高二数学应用举例4
高二数学算法的三种基本逻辑结构和框图表示2
高二数学弧度制2
高二数学演绎推理3
高二数学随机事件的概率6
高二数学赋值、输入和输出语句2
高二数学圆与方程
高二数学算法的基本逻辑结构2
高二数学函数y=Asin(ωx+φ)的图象1
高二数学随机变量和数学期望1
高二数学算法的概念4
高二数学向量数乘运算及其几何意义2
高二数学向量的减法
高二数学函数y=Asin(ωx+φ)的图象2
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |