2016-05-31
收藏
数学是利用符号语言研究数量、结构、变化以及空间模型等概念的一门学科。小编准备了高二数学三角函数知识点,具体请看以下内容。
锐角三角函数定义
锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。
正弦(sin)等于对边比斜边;sinA=a/c
余弦(cos)等于邻边比斜边;cosA=b/c
正切(tan)等于对边比邻边;tanA=a/b
余切(cot)等于邻边比对边;cotA=b/a
正割(sec)等于斜边比邻边;secA=c/b
余割(csc)等于斜边比对边。cscA=c/a
互余角的三角函数间的关系
sin(90-)=cos, cos(90-)=sin,
tan(90-)=cot, cot(90-)=tan.
平方关系:
sin^2()+cos^2()=1
tan^2()+1=sec^2()
cot^2()+1=csc^2()
积的关系:
sin=tancos
cos=cotsin
tan=sinsec
cot=coscsc
sec=tancsc
csc=seccot
倒数关系:
tancot=1
sincsc=1
cossec=1
锐角三角函数公式
两角和与差的三角函数:
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB ?
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
三角和的三角函数:
sin(++)=sincoscos+cossincos+coscossin-sinsinsin
cos(++)=coscoscos-cossinsin-sincossin-sinsincos
tan(++)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan)
辅助角公式:
Asin+Bcos=(A^2+B^2)^(1/2)sin(+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
tant=B/A
Asin+Bcos=(A^2+B^2)^(1/2)cos(-t),tant=A/B
倍角公式:
sin(2)=2sincos=2/(tan+cot)
cos(2)=cos^2()-sin^2()=2cos^2()-1=1-2sin^2()
tan(2)=2tan/[1-tan^2()]
三倍角公式:
sin(3)=3sin-4sin^3()
cos(3)=4cos^3()-3cos
半角公式:
sin(/2)=((1-cos)/2)
cos(/2)=((1+cos)/2)
tan(/2)=((1-cos)/(1+cos))=sin/(1+cos)=(1-cos)/sin
降幂公式
sin^2()=(1-cos(2))/2=versin(2)/2
cos^2()=(1+cos(2))/2=covers(2)/2
tan^2()=(1-cos(2))/(1+cos(2))
万能公式:
sin=2tan(/2)/[1+tan^2(/2)]
cos=[1-tan^2(/2)]/[1+tan^2(/2)]
tan=2tan(/2)/[1-tan^2(/2)]
积化和差公式:
sincos=(1/2)[sin(+)+sin(-)]
cossin=(1/2)[sin(+)-sin(-)]
coscos=(1/2)[cos(+)+cos(-)]
sinsin=-(1/2)[cos(+)-cos(-)]
和差化积公式:
sin+sin=2sin[(+)/2]cos[(-)/2]
sin-sin=2cos[(+)/2]sin[(-)/2]
cos+cos=2cos[(+)/2]cos[(-)/2]
cos-cos=-2sin[(+)/2]sin[(-)/2]
推导公式:
tan+cot=2/sin2
tan-cot=-2cot2
1+cos2=2cos^2
1-cos2=2sin^2
1+sin=(sin/2+cos/2)^2
其他:
sin+sin(+2/n)+sin(+2*2/n)+sin(+2*3/n)++sin[+2*(n-1)/n]=0
cos+cos(+2/n)+cos(+2*2/n)+cos(+2*3/n)++cos[+2*(n-1)/n]=0 以及
sin^2()+sin^2(-2/3)+sin^2(+2/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
函数名 正弦 余弦 正切 余切 正割 余割
在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为,设OP=r,P点的坐标为(x,y)有
正弦函数 sin=y/r
余弦函数 cos=x/r
正切函数 tan=y/x
余切函数 cot=x/y
正割函数 sec=r/x
余割函数 csc=r/y
正弦(sin):角的对边比上斜边
余弦(cos):角的邻边比上斜边
正切(tan):角的对边比上邻边
余切(cot):角的邻边比上对边
正割(sec):角的斜边比上邻边
余割(csc):角的斜边比上对边
三角函数万能公式
万能公式
(1)(sin)^2+(cos)^2=1
(2)1+(tan)^2=(sec)^2
(3)1+(cot)^2=(csc)^2
证明下面两式,只需将一式,左右同除(sin)^2,第二个除(cos)^2即可
(4)对于任意非直角三角形,总有
tanA+tanB+tanC=tanAtanBtanC
证:
A+B=-C
tan(A+B)=tan(-C)
(tanA+tanB)/(1-tanAtanB)=(tan-tanC)/(1+tantanC)
整理可得
tanA+tanB+tanC=tanAtanBtanC
得证
同样可以得证,当x+y+z=nZ)时,该关系式也成立
由tanA+tanB+tanC=tanAtanBtanC可得出以下结论
(5)cotAcotB+cotAcotC+cotBcotC=1
(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)
(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC
(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC
万能公式为:
设tan(A/2)=t
sinA=2t/(1+t^2) (A+,kZ)
tanA=2t/(1-t^2) (A+,kZ)
cosA=(1-t^2)/(1+t^2) (A+,且A+(/2) kZ)
就是说sinA.tanA.cosA都可以用tan(A/2)来表示,当要求一串函数式最值的时候,就可以用万能公式,推导成只含有一个变量的函数,最值就很好求了.
三角函数关系
倒数关系
tan cot=1
sin csc=1
cos sec=1
商的关系
sin/cos=tan=sec/csc
cos/sin=cot=csc/sec
平方关系
sin^2()+cos^2()=1
1+tan^2()=sec^2()
1+cot^2()=csc^2()
同角三角函数关系六角形记忆法
构造以上弦、中切、下割;左正、右余、中间1的正六边形为模型。
倒数关系
对角线上两个函数互为倒数;
商数关系
六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。
平方关系
在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。
两角和差公式
sin(+)=sincos+cossin
sin(-)=sincos-cossin
cos(+)=coscos-sinsin
cos(-)=coscos+sinsin
tan(+)=(tan+tan )/(1-tan tan)
tan(-)=(tan-tan)/(1+tan tan)
二倍角的正弦、余弦和正切公式
sin2=2sincos
cos2=cos^2()-sin^2()=2cos^2()-1=1-2sin^2()
tan2=2tan/(1-tan^2())
tan(1/2*)=(sin )/(1+cos )=(1-cos )/sin
半角的正弦、余弦和正切公式
sin^2(/2)=(1-cos)/2
cos^2(/2)=(1+cos)/2
tan^2(/2)=(1-cos)/(1+cos)
tan(/2)=(1cos)/sin=sin/1+cos
万能公式
sin=2tan(/2)/(1+tan^2(/2))
cos=(1-tan^2(/2))/(1+tan^2(/2))
tan=(2tan(/2))/(1-tan^2(/2))
三倍角的正弦、余弦和正切公式
sin3=3sin-4sin^3()
cos3=4cos^3()-3cos
tan3=(3tan-tan^3())/(1-3tan^2())
诱导公式
诱导公式的本质
所谓三角函数诱导公式,就是将角n(/2)的三角函数转化为角的三角函数。
常用的诱导公式
公式一: 设为任意角,终边相同的角的同一三角函数的值相等:
sin(2k)=sin kz
cos(2k)=cos kz
tan(2k)=tan kz
cot(2k)=cot kz
公式二: 设为任意角,的三角函数值与的三角函数值之间的关系:
sin()=-sin
cos()=-cos
tan()=tan
cot()=cot
高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理的高二数学三角函数知识点,希望大家喜欢。
苏教版五上6.2复式统计图课件
苏教版五上6.1复式统计表课件
苏教版五上5.11一个数除以小数课件
五上认识平方千米与公顷第二课时课件
五上和倍、差倍应用题练习课课件
五上公顷的认识课件
2014五上第三单元3的倍数的特征课件
五上认识平方千米与公顷第一课时课件
北师大版五年级上册多边形的面积复习课件
2014五上第三单元找因数课件
2015年五年级下册数学观察物体(三)课件
5.3除数是整数的小数除法课件
2014五上第五单元 解方程 例5课件
北师大版五年级上册找最大公因数课件
2014五年级上册第五单元 实际问题与方程例1课件
2014新人教版五年级数学上册练习四课件
2014新人教版五年级数学上册练习六课件
苏教版五上5.7小数乘小数(二)课件
苏教版五上5.9小数乘法的练习课件
苏教版五上5.12商的近似值(二)课件
2014五上第五单元 用字母表示数 例2课件
2014人教版小学五年级数学上册期末总复习课件
5.2小数点向右移动引起小数大小变化的规律课件
新版苏教版五年级下册数学第一单元等式与方程第一课时课件
2015年五年级下册第三单元长方体和正方体的体积课件
2014五上第五单元 用字母表示数 例5课件
2014五上第四单元 可能性 例3课件
2014新人教版五年级数学上册练习七课件
五年级上册小数除以整数公开课课件
2014最新版小学数学五年级上册练习十六课件
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |