2016-05-25
收藏
●考试目标 主词填空
1.空间向量基本定理及应用
空间向量基本定理:如果三个向量a、b、c不共面,那么对空间任一向量p存在惟一的有序实数组x、y、z,使p=x a+ y b+ z c.
2.向量的直角坐标运算:
设a=(a1,a2,a3), b=(b1,b2,b3),
A(x1,y1,z1),B(x2,y2,z2).
则a+b= .
a-b= .
ab= .
若a、b为两非零向量,则ab ab=0 =0.
?
●题型示例 点津归纳
【例1】 已知空间四边形OABC中,AOB=BOC=
AOC,且OA=OB=OC.M,N分别是OA,BC的中点,G是
MN的中点.
求证:OGBC.
【解前点津】 要证OGBC,只须证明 即可.
而要证 ,必须把 、 用一组已知的空间基向量来表示.又已知条件为AOB=BOC=AOC,且OA=OB=OC,因此可选 为已知的基向量.
【规范解答】 连ON由线段中点公式得:
又 ,
所以 )
= ( ).
因为 .
且 ,AOB=AOC.
所以 =0,即OGBC.
【解后归纳】 本题考查应用平面向量、空间向量和平面几何知识证线线垂直的能力.
【例2】 在棱长为a的正方体ABCDA1B1C1D1中,求:异面直线BA1与AC所成的角.
【解前点津】 利用 ,求出向量 与 的夹角〈 , 〉,再根据异面直线BA1,AC所成角的范围确定异面直线所成角.
【规范解答】 因为 ,
所以
=
因为ABBC,BB1AB,BB1BC, 例2图
所以 =0,
=-a2.
所以 =-a2.
又
所以〈 〉=120.
所以异面直线BA1与AC所成的角为60.
【解后归纳】 求异面直线所成角的关键是求异面直线上两向量的数量积,而要求两向量的数量积,必须会把所求向量用空间的一组基向量来表示.
【例3】 如图,在正方体ABCDA1B1C1D1中,E、F分
别是BB1、DC的中点.
(1)求AE与D1F所成的角;
(2)证明AE平面A1D1F.
【解前点津】 设已知正方体的棱长为1,且 =e1,
=e2, =e3,以e1,e2,e3为坐标向量,建立空间直角坐标系Dxyz,
则:(1)A(1,0,0),E(1,1, ),F(0, ,0),D1(0,0,1),
所以 =(0,1, ), =(0, ,-1).
所以 =(0,1 ),(0, ,-1)=0.
所以 ,即AE与D1F所成的角为90.
(2)又 =(1,0,0)= ,
且 =(1,0,0)(0,1, )=0.
所以 AED1A1,由(1)知AED1F,且D1A1D1F=D1.
所以AE平面A1D1F.
【解后归纳】本题考查应用空间向量的坐标运算求异面直线所成的角和证线面垂直的方法.
【例4】 证明:四面体中连接对棱中点的三条直线交于一点且互相平分(此点称为四面体的重心).
【规范解答】∵E,G分别为AB,AC的中点,
EG ,同理HF ,EG HF .
从而四边形EGFH为平行四边形,故其对角线EF,
GH相交于一点O,且O为它们的中点,连接OP,OQ.
只要能证明向量 =- 就可以说明P,O,Q三点共线且O
为PQ的中点,事实上, ,而O为GH的中点, 例4图
CD,QH CD,
= =0.
=,PQ经过O点,且O为PQ的中点.
【解后归纳】本例要证明三条直线相交于一点O,我们采用的方法是先证明两条直线相交于一点,然后证明 两向量共线,从而说明P、O、Q三点共线进而说明PQ直线过O点.
●对应训练 分阶提升
一、基础夯实
1.在下列条件中,使M与A、B、C一定共面的是( )
A. B.
C. D.
2.与向量a=(12,5)平行的单位向量是( )
A. B.
C. D.
3.若向量{a, b,c}是空间的一个基底,向量m=a+b,n=a-b,那么可以与m、n构成空间另一个基底的向量是( )?
A.a B.b ? C. c D.2a?
4. a、b是非零向量,则〈a,b〉的范围是 ( )?
A.(0, ) B.[0, ]? C.(0,)? D.[0,]?
5.若a与b是垂直的,则ab的值是( )?
A.大于0 B.等于零? ?C.小于0 D.不能确定
6.向量a=(1,2,-2),b=(-2,-4,4),则a与b( )
A.相交 B.垂直? C.平行 ?D.以上都不对
7. A(1,1,-2)、B(1,1,1),则线段AB的长度是( )?
?A.1 ?B.2 ? C.3 ?D.4
8. m={8,3,a},n={2b,6,5},若m∥n,则a+b的值为( )
?A.0 ? B. C. D.8
9. a={1,5,-2},b={m,2,m+2},若ab,则m的值为( )?
?A.0 ?B.6 ?C.-6 ?D.6
10. A(2,-4,-1),B(-1,5,1),C(3,-4,1),令a= ,b= ,则a+b对应的点为( )
?A.(5,-9,2) B.(-5,9,-2) ?C.(5,9,-2) D.(5,-9,2)
11. a=(2,-2,-3),b=(2,0,4),则a与b的夹角为( )
?A.arc cos ? B. ? C. D.90
12.若非零向量a={x1,y1,z1},b={x2,y2,z2},则 是a与b同向或反向的( )
?A.充分不必要条件 B.必要非充分条件?
?C.充要条件 D.不充分不必要条件
二、思维激活
13.已知向量a, b, c满足a+b+c=0,|a|=3,| b|=1,| c|=4.则ab+bc+ca= .?
14.已知|a|=2 ,|b|= ,ab=- ,则a、b所夹的角为 .
15.已知空间三点A、B、C坐标分别为(0,0,2),(2,2,0),(-2,-4,-2),点P在xOy平面上且PAAB,PAAC,则P点坐标为 .
16.已知a={8,-1,4},b={2,2,1},则以a、b为邻边的平行四边形的面积为 .
三、能力提高
17.已知线段AB在平面内,线段AC,线段BDAB,且与所成的角是30,如果AB=a,AC=BD=b,求C、D之间的距离.
18.长方体ABCDA1B1C1D1中,E、F分别为AB、B1C1中点,若AB=BC=2,AA1=4,试用向量法求:
(1) 的夹角的大小.
(2)直线A1E与FC所夹角的大小.
19.在正方体ABCDA1B1C1D1中,E、F分别为BB1、DC的中点,求证:D1F平面ADE.
20.如图所示,已知 ABCD,O是平面AC外的一点, ,求证:A1,B1,C1,D1四点共面.
空间向量及其运算习题解答
1.C 由向量共线定义知.?
2.C 设此向量为(x,y), ,?
3.C
4.D 根据两向量所成的角的定义知选D.
5. B 当ab时,ab=0(cos 〈a, b〉=0)?
6.C a=(1,2,-2)=- b a∥b.
7.C |AB|= =3.?
8.C ∵m∥n,故(8,3,a)=k(2b,6,5),?8=2bk,3=6k,a=5k,?
k= 故a= ,b=8,a+b= +8=
9.B ∵ab 1m+52-2(m+2)=0. m=6.
10.B =(-1,0,-2), =(-4,9,0),a+b=(-5,9,-2).
11.C cos(ab)= =- .
12.A?若 ,则a与b同向或反向,反之不成立.
13.-13 ∵a+b+c=0,(a+b+c)2=a2+b2+c2+2(ab+bc+ca)=0,?
ab+bc+ca=- (a2+b2+c2)=- (9+1+16)=-13.
14. ?cos〈a, b〉= .a,b所夹的角为 .
15.(-8,6,0) 由向量的数量的积求得.
16.9 S=|a||b|sin〈a, b〉求得.
17.如图,由AC,知ACAB.?
过D作DD,D为垂足,则DBD=30,
〈 〉=120,
18.如图,建立空间坐标系,则D(0,0,0)、A(2,0,0),B(2,2,0)
、C(0,2,0)、A1(2,0,4)、B1(2,2,4)、C1(0,2,4).
由题设可知E(2,1,0),F(1,2,4).
(1)令 的夹角为,?
则cos= .
的夹角为-arccos .
(2)直线A1E与FC的夹角为arccos
19.如图所示,不妨设正方体的棱长为1,且设 =i, =j, =k,
以i、j、k的坐标向量建立空间直角坐标系Dxyz,
则 =(-1,0,0), =(0, ,-1),?
=(-1,0,0)(0, ,-1)=0,ADD1F.
又 =(0,1, ), =(0, ,-1),
20.证明:∵
=2
=
A1,B1,C1,D1四点共面.
小学数学期末复习方法建议
小学低年级数学评价方式的探索
数学学习评价方法简介
把握教材特点优化课堂教学
在成功中反思在实践中进步
应注意培养学生的估算能力
浅谈比较法在小学数学教学中的应用
数学教育家说推理培养在早期数学教育中至关重要
加强小学生数学应用意识培养
新课程理念下的小学数学
创设问题情境发展数学应用意识
要重视数学教学中的动手操作
让数学课堂充满文学色彩
如何上好小学数学复习课
例谈教学设计的开放性
培养学生初步空间观念
实施新课程标准,全面发展学生的能力
让学生的小手动起来
变教法为学法变被动为主动
小学数学教学中思维能力的培养
小学生解题能力测量的新思路
浅谈低年级计算教学如何激发学生的学习兴趣
让学生在体验中自主发展
小学毕业班数学复习策略之我见
惊喜之余的新探究
确立有效的教学目标
小学数学教学语言纵横谈
让数学课堂洋溢着生命的光彩
小学数学课堂教学中的「愉快教育」
从点滴做起,努力贯彻课标精神
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |