2016-05-25
收藏
2.1 圆锥曲线
一、知识要点
1.通过用平面截圆锥面,经历从具体情境中抽象出椭圆;抛物线模型的过程;
2.椭圆的定义:
3.双曲线的定义:
4.抛物线的定义:
5.圆锥曲线的概念:
二、例题
例1.试用适当的方法作出以两个定点 为焦点的一个椭圆。
例2.已知:
⑴到 两点距离之和为9的点的轨迹是什么图形?
⑵到 两点距离之差的绝对值等于6的点的轨迹是什么图形?
⑶到点 的距离和直线 的距离相等的点的轨迹是什么图形?
例3.(参选)在等腰直角三角形 中, , ,以 为焦点的椭圆过 点,过点 的直线与该椭圆交于 两点,求 的周长。
三、课堂检测
1.课本P26 2www.
2.课本P26 3
3.已知 中, 且 成等差数列。
⑴求证:点 在一个椭圆上运动;
⑵写出这个椭圆的焦点坐标。
四、归纳小结
五、课后作业
1.已知 是以 为焦点,直线 为准线的抛物线上一点,若点M到直线 的距离为 ,则 =
。
2.已知点 ,动点 满足 ,则点 的轨迹是 。
3.已知点 ,动点 满足 ( 为正常数)。若点 的轨迹是以 为焦点的双曲线,则常数 的取值范围是 。
4. 已知点 ,动点 满足 ,则动点 的轨迹是 。
5.若动圆与圆 外切,对直线 相切,则动圆圆心的轨迹是 。
6.已知 中, ,且 成等差数列。
⑴求证:点 在一个椭圆上运动;⑵写出这个椭圆的焦点坐标。
7.已知 中, 长为6,周长为16,那么顶点 在怎样的曲线上运动?
8.如图,取一条拉链,打开它的一部分,在拉开的两边上各选择一点,分别固定在点 上。把笔尖放在点 处,随着拉链逐渐拉开或者闭拢,笔尖所经过的点就画出一条曲线,这条曲线是双曲线的一支,试说明理由。
9.若一个动点 到两个定点 的距离之差的绝对值为定值 ,试确定动点 的轨迹。
10.动点 的坐标满足 ,试确定 的轨迹。
六、预习作业
1.方程 表示椭圆则 的取值范围 。
2.方程 表示焦点在 轴上 。
3.方程 的焦点坐标为 。
高二数学圆的参数方程及应用
高二数学轨迹及圆锥曲线
高二数学空间几何体的体积4
高二数学统计1
高二数学空间几何体的表面积4
高二数学圆的渐开线与摆线
高二数学空间几何体的体积2
高二数学两条异面直线所成的角和距离
高二数学数乘向量及坐标运算
高二数学空间几何体的体积1
高二数学立体几何体复习3
高二数学椭圆的定义及其标准方程
高二数学超越不等式
高二数学复数的概念2
高二数学双曲线的定义和标准方程4
高二数学由递推公式求通项公式的常见方法
高二数学参数方程的概念
高二数学归纳-猜想-论证教案
高二数学无穷等比数列的各项和2
高二数学函数值的求法
高二数学几何中的范围问题
八年级英语ChapterReading教案3
高二数学极限的运算法则
高二数学空间向量的坐标表示
高二数学统计2
高二数学独立事件积的概率
高二数学空间几何体的表面积2
高二数学数列及通项
高二数学空间几何体的表面积1
高二数学立体几何体复习1
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |