2016-05-25
收藏
平面几何作图限制只能用直尺、圆规,而这里所谓的直尺是指没有刻度只能画直线的尺。用直尺与圆规当然可以做出许多种之图形,但有些图形如正七边形、正九边形就做不出来。有些问题看起来好像很简单,但真正做出来却很困难,这些问题之中最有名的就是所谓的三大问题。
几何三大问题是 :
1.化圆为方-求作一正方形使其面积等於一已知圆;
2.三等分任意角;
3.倍立方-求作一立方体使其体积是一已知立方体的二倍。
圆与正方形都是常见的几何图形,但如何作一个正方形和已知圆等面积呢?若已知圆的半径为1则其面积为(1)2=,所以化圆为方的问题等於去求一正方形其面积为,也就是用尺规做出长度为1/2的线段(或者是的线段)。
三大问题的第二个是三等分一个角的问题。对於某些角如90.、180.三等分并不难,但是否所有角都可以三等分呢?例如60.,若能三等分则可以做出20.的角,那麽正18边形及正九边形也都可以做出来了(注:圆内接一正十八边形每一边所对的圆周角为360./18=20.)。其实三等分角的问题是由求作正多边形这一类问题所引起来的。
第三个问题是倍立方。埃拉托塞尼(公元前276年~公元前195年)曾经记述一个神话提到说有一个先知者得到神谕必须将立方形的祭坛的体积加倍,有人主张将每边长加倍,但我们都知道那是错误的,因为体积已经变成原来的8倍。这些问题困扰数学家一千多年都不得其解,而实际上这三大问题都不可能用直尺圆规经有限步骤可解决的。
1637年笛卡儿创建解析几何以後,许多几何问题都可以转化为代数问题来研究。1837年旺策尔(Wantzel)给出三等分任一角及倍立方不可能用尺规作图的证明。1882年林得曼(Linderman)也证明了的超越性(即不为任何整数系数多次式的根),化圆为方的不可能性也得以确立。
只要大家用心学习,认真复习,就有可能在高考的战场上考取自己理想的成绩。查字典数学网的编辑为大家带来的高考数学经典问题汇总几何的三大问题,希望能为大家提供帮助。
八年级上数学单元考试1试题
北师大八年级上数学期末试题及答案加设计说明
八年级上数学单元考试1试题(1)
浙教版八下期中试卷数学
八年级数学期末检测卷B[下学期]
第五章位置的确定复习题
八年级(上)数学单元测试卷(1)
崇仁二中初二年级(上)数学第一次月考
八年级(上)第一次月考
八年级上评价性试题十二(因式分解)
中考数学复习模拟题
八年级上学期数学期中检测试题
八年级(上)数学单元测试卷
中考题练(七)——第十章实数
实数训练卷
华师大南安市八年级上学期期末考试
八年级第一学期数学期中试卷
八年级(上)第一次月考(1)
因式分解综合训练
最新中考聚焦(二次根式)
八年级第一学期数学期中试卷(1)
复证明(三)测试巻
八年级(上)数据的描述测试题
一元一次不等与一次函数
因式分解练习题
上学期八年级数学期末考试卷
上学期第二次测评
初二年级(上)期中考试题
八年级上学期期末考试
上虞市初二第一学期期末试卷
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |