2016年湖南高考数学圆锥曲线专项练习及答案_题型归纳 - 查字典数学网
数学2016年湖南高考数学...
首页>学习园地>题型归纳>2016年...

2016年湖南高考数学圆锥曲线专项练习及答案

2016-05-24 收藏

圆锥曲线包括圆,椭圆,双曲线,抛物线,下面是查字典数学网整理的圆锥曲线专项练习及答案,请考生及时练习。

1.已知M(-2,0),N(2,0),|PM|-|PN|=3,则动点P的轨迹是()

A.双曲线 B.双曲线左边一支

C.双曲线右边一支 D.一条射线

2.若双曲线方程为x2-2y2=1,则它的右焦点坐标为()

3.(2014大纲全国,文11)双曲线C:=1(a0,b0)的离心率为2,焦点到渐近线的距离为,则C的焦距等于()

A.2 B.2 C.4 D.4

4.过双曲线=1(a0,b0)的右焦点F作圆x2+y2=a2的切线FM(切点为M),交y轴于点P.若M为线段FP的中点,则双曲线的离心率是()

A.3 B. 8C.2 D.5

5.已知双曲线的两个焦点为F1(-,0),F2(,0), M是此双曲线上的一点,且满足=0,||||=2,则该双曲线的方程是()

A.-y2=1 B.x2-=1 C.=1 D.=1

6.已知双曲线C的离心率为2,焦点为F1,F2,点A在C上。若|F1A|=2|F2A|,则cosAF2F1=()

A.2 B. 3C.1 D.0

7.在平面直角坐标系xOy中,双曲线=1上一点M的横坐标为3,则点M到此双曲线的右焦点的距离为( )。

8.A,B是双曲线C的两个顶点,直线l与双曲线C交于不同的两点P,Q,且与实轴所在直线垂直。若=0,则双曲线C的离心率e=( ) 。

9.已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且过点(4,-)。

(1)求双曲线方程;

(2)若点M(3,m)在双曲线上,求证:=0;

(3)在(2)的条件下求F1MF2的面积。

10.已知点M(-2,0),N(2,0),动点P满足条件|PM|-|PN|=2,记动点P的轨迹为W。

(1)求W的方程;

(2)若A和B是W上的不同两点,O是坐标原点,求的最小值。

11.等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4,则C的实轴长为()

A. B.2 C.4 D.8

12.已知点P是双曲线=1(a0,b0)右支上一点,F1,F2分别为双曲线的左、右焦点,点I为PF1F2的内心,若+成立,则的值为()

A.1B. -1C. 0D.2

13.若点O和点F(-2,0)分别为双曲线-y2=1(a0)的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为()

A.[3-2,+) B.[3+2,+)C. D.

14.(2014浙江,文17)设直线x-3y+m=0(m0)与双曲线=1(a0,b0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是( )。

15.(2014湖南,文20)如图,O为坐标原点,双曲线C1:=1(a10,b10)和椭圆C2:=1(a20)均过点P,且以C1的两个顶点和C2的两个焦点为顶点的四边形是面积为2的正方形。

(1)求C1,C2的方程;

(2)是否存在直线l,使得l与C1交于A,B两点,与C2只有一个公共点,且||=||证明你的结论。

16.已知双曲线E:=1(a0,b0)的两条渐近线分别为l1:y=2x,l2:y=-2x。

(1)求双曲线E的离心率;

(2)如图,O为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别在第一、四象限),且OAB的面积恒为8.试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程;若不存在,说明理由。

参考答案:

1.C。解析:|PM|-|PN|=34,

由双曲线定义知,其轨迹为双曲线的一支。

又|PM||PN|,点P的轨迹为双曲线的右支。

2.C。解析:双曲线的标准方程为x2-=1,a2=1,b2=。

c2=a2+b2=。

c=,故右焦点坐标为。

3.C。解析:e=2,=2。

设焦点F2(c,0)到渐近线y=x的距离为,

渐近线方程为bx-ay=0,

∵c2=a2+b2,b=。

由=2,得=2,

=4,

解得c=2.焦距2c=4,故选C。

4.A。解析:如图所示,在RtOPF中,OMPF,且M为PF的中点,

则POF为等腰直角三角形。

所以OMF也是等腰直角三角形。

所以有|OF|=|OM|,即c=a。

故e=。

5.A。解析:由=0,可知。

可设||=t1,||=t2,

则t1t2=2。

在MF1F2中,=40,

则|t1-t2|=6=2a。

解得a=3。故所求双曲线方程为-y2=1。

6.A。解析:双曲线的离心率为2,=2,

a∶b∶c=1∶3∶2。

|AF1|=4a,|AF2|=2a,

|F1F2|=2c=4a,

cosAF2F1 选A。

7.4。解析:由题意点M的坐标可求得为M(3,),双曲线的右焦点的坐标为F2(4,0)。

由两点间的距离公式得|F2M|==4。

8.解析:如图所示,设双曲线方程为=1,取其上一点P(m,n),

则Q(m,-n),由=0可得(a-m,-n)(m+a,-n)=0,

化简得a2-m2+n2=0。

又=1可得b=a,

故双曲线的离心率为e=。

9.(1)解:因为e=,

所以可设双曲线方程为x2-y2=。

因为双曲线过点(4,-),

所以16-10=,即=6。

所以双曲线方程为=1。

(2)证明:由(1)可知,在双曲线中a=b=,所以c=2。

所以F1(-2,0),F2(2,0)。

所以=(-2-3,-m),

=(2-3,-m),

则=9-12+m2=m2-3。

因为点(3,m)在双曲线上,

所以9-m2=6,即m2=3。

所以=m2-3=0。

(3)解:由 (2)知F1MF2的高h=|m|=,由F1MF2的底边|F1F2|=4,

则=6。

10.解:(1)由|PM|-|PN|=2知动点P的轨迹是以M,N为焦点的双曲线的右支,实半轴长a=。

又焦距2c=4,所以虚半轴长b=。

所以W的方程为=1(x)。 (2)设A,B的坐标分别为(x1,y1),(x2,y2)。

当ABx轴时,x1=x2,y1=-y2,

从而=x1x2+y1y2==2。

当AB与x轴不垂直时,设直线AB的方程为y=kx+m(k1),与W的方程联立,消去y得(1-k2)x2-2kmx-m2-2=0,

则x1+x2=,x1x2=,

所以=x1x2+y1y2

=x1x2+(kx1+m)(kx2+m)

=(1+k2)x1x2+km(x1+x2)+m2

=+m2

==2+。

又因为x1x20,所以k2-10。

所以2。

综上所述,当ABx轴时,取得最小值2。

11.C。解析:设等轴双曲线方程为x2-y2=m(m0),

因为抛物线的准线为x=-4,

且|AB|=4,所以|yA|=2。

把坐标(-4,2)代入双曲线方程得m=x2-y2=16-12=4,

所以双曲线方程为x2-y2=4,

即=1。

所以a2=4,所以实轴长2a=4。

12.B。解析:设PF1F2内切圆半径为r,根据已知可得|PF1|r=|PF2|r+2cr,

整理可得|PF1|=|PF2|+2c。

由双曲线的定义可得

|PF1|-|PF2|=2a,

则2c=2a,故=。

13.B。解析:由a2+1=4,得a=,

则双曲线方程为-y2=1。

设点P(x0,y0),则=1,

即-1。

=x0(x0+2)+

=+2x0+-1

=,

x0,当x0=时,取最小值3+2.故的取值范围是[3+2,+)。

14.。解析:双曲线=1的两条渐近线方程分别是y=x和y=-x。

由解得A,

由解得B。

设AB中点为E,则E。

由于|PA|=|PB|,所以PE与直线x-3y+m=0垂直,

而kPE=,

于是=-1。所以a2=4b2=4(c2-a2)。

所以4c2=5a2,解得e=。

15.解:(1)设C2的焦距为2c2,由题意知,2c2=2,2a1=2.从而a1=1,c2=1。

因为点P在双曲线x2-=1上,所以=1。故=3。

由椭圆的定义知2a2=2。

于是a2=2。

故C1,C2的方程分别为x2-=1,=1。

(2)不存在符合题设条件的直线。

若直线l垂直于x轴,因为l与C2只有一个公共点,所以直线l的方程为x=或x=-。

当x=时,易知A(),B(,-),

所以||=2,||=2。

此时,||||。

当x=-时,

同理可知,||||。

若直线l不垂直于x轴,设l的方程为y=kx+m。

由得(3-k2)x2-2kmx-m2-3=0。

当l与C1相交于A,B两点时,

设A(x1,y1),B(x2,y2),

则x1,x2是上述方程的两个实根,

从而x1+x2=,x1x2=。

于是y1y2=k2x1x2+km(x1+x2)+m2=。

由得(2k2+3)x2+4kmx+2m2-6=0。

因为直线l与C2只有一个公共点,所以上述方程的判别式=16k2m2-8(2k2+3)(m2-3)=0。

化简,得2k2=m2-3,

因此=x1x2+y1y2=0,

于是+2-2,

即||||,

故||||。

综合,②可知,不存在符合题设条件的直线。

16.解法一:(1)因为双曲线E的渐近线分别为y=2x,y=-2x,

所以=2,所以=2,

故c=a,

从而双曲线E的离心率e=。

(2)由(1)知,双曲线E的方程为=1。

设直线l与x轴相交于点C。

当lx轴时,若直线l与双曲线E有且只有一个公共点,

则|OC|=a,|AB|=4a,

又因为OAB的面积为8,

所以|OC||AB|=8,

因此a4a=8,解得a=2,

此时双曲线E的方程为=1。

若存在满足条件的双曲线E,则E的方程只能为=1。

以下证明:当直线l不与x轴垂直时,双曲线E:=1也满足条件。

设直线l的方程为y=kx+m,依题意,得k2或k-2,则C。

记A(x1,y1),B(x2,y2)。

由得y1=,

同理得y2=,

由SOAB=|OC||y1-y2|=8,

即m2=4|4-k2|=4(k2-4)。

由得,(4-k2)x2-2kmx-m2-16=0。

因为4-k20,

=4k2m2+4(4-k2)(m2+16)=-16(4k2-m2-16),又m2=4(k2-4),

所以=0,即l与双曲线E有且只有一个公共点。

因此,存在总与l有且只有一个公共点的双曲线E,且E的方程为=1。

解法二:(1)同解法一。

圆锥曲线专项练习及答案分享到这里,更多内容请关注高考数学试题栏目。

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
大家都在看

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限