《二次函数的图像及性质》教学案例反思_教学设计 - 查字典数学网
数学《二次函数的图像及性质...
首页>数学教研>教学设计>《二次函数...

《二次函数的图像及性质》教学案例反思

2016-04-27 收藏

【课堂实录】

教师:同学们,我们上一节课一起研究了二次函数的表达式,那么我们一起来回忆一下表达式是什么?

学生齐答:y=ax2+bx+c(a,b,c是常数,a不为0)

教师:好,那么请同学们在黑板上写出一些常数较简单的二次函数表达式.

(学生表现很踊跃,一下写出了十多个)

教师:黑板上这些二次函数大致有几个类型?

学生:(讨论了3分钟)四大类!有y=ax2+bx+c;y=ax2+bx;y=ax2+c;y=ax2!

教师:太棒了!同学们归纳的很好,今天我们就一起来研究比较简单的一种y=ax2的图像及性质!

教师在学生板书的函数中选了四个,并把复杂的系数换成简单的常数,找到如下函数:y=x2;y=-x2;y=2x2;y=-2x2.(教师在这里让学生自己准备素材!

教师启发学生利用函数中的列表,描点,连线的方法,把画上述四个函数的任务分配给A,B,C,D小组,一组一个在已画好的坐标系的小黑板上动手操作.生在自己提供的素材上进行再加工,兴趣很大,合作交流充分,课堂气氛活跃.教师到每组巡视、指导,在确认画图全部正确的情况下,提出了要求,开始了探究之旅.

教师:请同学们小组之间比较一下,你们画的图象位置一样吗?

学生;不一样.

教师:有什么不一样?(开始聚焦矛盾)

学生:开口不一样.

学生A:走向不一样.

学生B:经过的象限不一样.

学生C:我们的图象在原点的上方,他们的图象在原点的下方.

教师:看来是有些不一样,那么它们位置的不一样是由什么要素决定的?(教师指明了探究方向,但未指明具体的探究之路,这是明智的)

学生:是由二次项系数的取值确定的.

教师:好了,根据同学们的回答,能得到图象或函数的那些结论?(顺水推舟,放手让学生一搏)

热烈讨论后,学生D回答并板书,当a0时,图象在原点的上方,当a0时,图象在原点的下方。

学生E:当a0时,图象开口向上;当a0时,图象开口向下.

学生A站起来补充:还有顶点,顶点坐标(0,0),对称轴为y轴!

(这个过程约用了十多分时间,学生体会非常充分,从学生的神情看,绝大多数学生已接受了这几个学生的板书,但教师未对结论进行优化。怎么没有一个学生说出二次函数的性质呢?短暂停顿后,教师确定了思路)

教师:刚才你们是研究图象的性质,你们能否由图象性质得出相应的函数的性质?

看着学生茫然的目光,我在思考是不是我的问题----

教师:请看同学们的板书,能揣摩图象走向的意思吗?

学生:(七嘴八舌)当a0时,图象从左上向下走到原点后在向右上爬;当a0时,图象从左下向上爬到原点后在向右下走(未出现教师所预期的结论)

教师:好,你们从图象的直观形象来理解的图象性质,很贴切,你们能从自变量与函数值之间的变化角度来说明向上爬和向下走吗?

学生:当a0时,x0,x与y同向变化;x0,x与y异向变化..

教师:也就是说a0,y随x的增大而---

学生:增大!

学生: a0,y随x的增大而减小.

教师:好,那a0时呢?

学生齐答:与a0时相反!

(在这里,教师努力避免了告诉的知识传授方式。间接引导需要智慧,是一种艺术)

教师:好了,我们就用x与y之间的变化规律来表述二次函数的性质,好吗?请同学们在书上补充一下图象的性质,并熟悉一下二次函数的性质。(接下来学生练习几道题)

(教师看时间差不多了,如果不马上小结的话就拖堂了)

教师:好了,我们一起总结一下今天我们所学的内容:(1)二次函数的图像的画法(2)二次函数的性质.希望同学们课后认真整理!

这时下课的铃声响起来了!

[教学反思]

这节课,我对教材进行了探究性重组,同时放手让学生在探究活动中去经历、体验、内化知识的做法是成功的。通过充分的过程探究,学生容易得出也是最早得出了图象的性质,借助直观图象的性质而得到二次函数的性质。花费了一番周折,说明去掉这个中介,直接让学生从单调性来接受二次函数性质是困难的。

真正的形成往往来源于真实的自主探究。只有放手探究,学生的潜力与智慧才会充分表现,学生也才会表现真实的思维和真实的自我。在新课程理念的指导下,我们的一切教学都要围绕学生的成长与发展做文章,真正让学生理解、掌握真实的知识和真正的知识。

首先,要设计适合学生探究的素材。教材对二次函数的性质是从增减来描述的,我们认为这种对性质的表述是教条化的,对这种学术、文本状态的知识,学生不容易接受。当然教材强调所呈现内容的逻辑性、严密性与科学性是合理的。但是能让学生理解和接受的知识才是最好的。如果牵强的引出来,不一定是好事。

其次,探究教学的过程就是实现学术形态的知识转化为教育形态知识的过程。探究教学是追求教学过程的探究和探究过程的自然和本真。只有这样探究才是有价值的,真知才会有生长性。要表现过程的真实与自然,从建构主义的观点出发,就是要尊重学生各自的经验与思维方式、习惯。结论是一致的,但过程可以是多元的,教师要善于恰倒好处地优化提炼学生的结论。追求自然,就要适当放开学生的手、口、脑,例如本文中的走向问题,向上爬、向下走等,如果是讲授注入式,我们就听不到学生真实的声音了。

最后,教师在学生探究真知之旅上应是一个促进者、协作者、组织者。要做善于点燃学生探究欲望和智慧火把的人,要善于让学生说教师要说的话,做教师想做的事,这就是一个成功的促进者。数学教学的过程是师生共同活动、共同成长与发展的过程。真正的知识不全是由教材和教师讲授的途径获取的,其实学生也是课程资源的开发者,如本课例中的走向问题,同向变化等,这为函数性质的得出做了很好的铺垫。要彻底抛弃唯书论唯师论,与学生一起去探究协作,寻觅适合学生自己的真知才是最有效的教学。要开展成功的探究,教师要科学设置问题情景或问题素材,使探究的问题具有层次性和探究性,适时、适势、适度地用教学机智调控课堂。例如本课中,学生老是得不出二次函数性质的内容,其中引导的过程就是充满机智的过程。在教学设计中,要预设多种意外和可能,这样探究真知的过程就会艰辛并顺利展开。这才是一个成功的组织者



查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限