求二次函数解析式复习教学反思_教学设计 - 查字典数学网
数学求二次函数解析式复习教...
首页>数学教研>教学设计>求二次函数...

求二次函数解析式复习教学反思

2016-04-27 收藏

一、背景说明

这是九年级刚上完二次函数新课后的一堂复习课,本堂课的目的是通过用多种方法求二次函数的解析式,从而培养学生的一题多解能力及探索意识.

二、探究与讨论

问题:已知二次函数的图象过点(1,0),在y轴上的截距为3,对称轴是直线x=2,求它的函数解析式.

(给学生充分的思考时间)

师: 哪位同学能把解法说一下?

生A: 解:设二次函数解析式为y=ax2+bx+c,把(1,0),(0,3)代入,得

a+b+c=0

c=3

又因为对称轴是x=2,所以-b/2a=2

所以得 a+b+c=0

c=3

-b/2a=2

解得 a=1

b=-4

c=3

所以所求 解析式为y=x2-4x+3

师: 两点代入二次函数一般式必定出现不定式,能想到对称轴,从而以三元一次方程组解得a,b,c,不错!除此方法外,还有没有其他方法,大家可以相互讨论一下.

(同学们开始讨论,思考)

生B: 我认为此题可用顶点式,即设二次函数解析式为y=a(x-2)2+k,把(1,0),(0,3) 代入,得

a+k=0

4a+k=3

解得 a=1

k=-1

故所求二次函数的解析式为y= (x-2)2-1,即y=x2-4x+3

师: 非常好.那还有没有其他方法,请大家再思考一下.

(学生沉默一会儿,有人举手发言)

生C: 因为对称轴是直线x=2,在y轴上的截距为3,我认为该二次函数解析式可设为y=ax2-4ax+3,在把(1,0)代入得a-4a+3=0,解得a=1,所以所求解析式为y=x2-4x+3

师: 设得巧妙,这个函数解析式只含一个字母,这给运算带来很大方便,很好,很善于思考.大家再想想看,是否还有其他解题途径.

(学生们又挖空心思地思考起来,终于有一学生打破沉寂)

生D: 由于图象过点(1,0), 对称轴是直线x=2,故得与x轴的另一交点为(3,0),所以可用两根式设二次函数解析式为y=a(x-1)(x-3), 再把(0,3)代入, 得a=1,

所以二次函数解析式为y= (x-1)(x-3) ,即y=x2-4x+3

(同学们给生D以热烈的掌声)

师: 函数本身与图形是不可分割的,能数形结合,非常不错,用两根式解此题,非常独到.

(至此下课时间快到,原先设计好的三题只完成一题,但看到学生的探索的可爱劲,不能按课前安排完成内容又有何妨呢?)

师: 最后,请同学们想一下,通过本堂课的学习,你获得了什么?

生1:我知道了求二次函数解析式方法有: 一般式,顶点式,两根式.

生2:我获得了解题的能力,今后做完一道题目,我会思考还有没有更好的方法.

三、回顾与反思

1.每一个学生都有丰富的知识体验和生活积累,每一个学生都会有各自的思维方式和解决问题的策略.而我对他们的能力经常低估,在以往的上课过程中,总喋喋不休,深怕讲漏了什么,但一堂课下来,学生收获甚微.本堂课,我赋予学生较多的思考和交流的机会,试着让学生成为数学学习的主人,我自己充当了一回数学学习的组织者,没想到取得了意想不到的效果,学生不但能用一般式,顶点式解决此题,还能深层挖掘巧妙地用两根式解决此题,学生的潜力真是无穷.

2. 通过本堂课的教学,我想了很多.新课程改革要求教师要有现代的教学观、学生观,才能培养出具有创新精神和实践能力的下一代。所以教师应当走下教坛,与学生在民主、平等的氛围中交流意见,共同探讨问题。学生的主动参与是学习活动有效进行的关键所在,因此教师还应该在学生学上进行改革,从学生的实际出发,从学生的生活出发,才能把学生从被动听的束缚中解放出来,使学生真正成为学习的主人。本节课教师始终与学生保持着平等和相互尊重,为学生探究学习提供了前提条件。

问题是无穷尽而活的,只有让学生主动探索,才能真正地理解,巩固知识点,从而运用知识点,即真正知其所以然.今后,我将不断尝试,不断完善自身,使学生的讨论和思考更有意义.



查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
大家都在看

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限